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Abstract
This paper introduces a new stochastic surface model for
deformable 3D surfaces and demonstrates its utility for the
purpose of 3D sculpting. This is the problem of simple-to-
use and intuitively interactive 3D free-form model building.
A 3D surface is a sample of a Markov Random Field (MRF)
defined on the vertices of a 3D mesh where MRF sites co-
incide with mesh vertices and the MRF cliques consist of
subsets of sites. Each site has 3D coordinates (x,y,z) as
random variables and is a member of one or more clique
potentials which are functions of the vertices in a clique
and describe stochastic dependencies among sites. Data,
which is used to deform the surface can consist of, but is
not limited to, an unorganized set of 3D points and is mod-
eled by a conditional probability distribution given the 3D
surface. A deformed surface is a MAP (Maximum A posteri-
ori Probability) estimate of the joint distribution of the MRF
surface model and the data. The generality and simplicity
of the MRF model provides the ability to incorporate un-
limited local and global deformation properties. Included
in our development is the introduction of new data models,
new anisotropic clique potentials, and cliques which involve
sites that are spatially far apart. Other applications of these
models are possible, e.g., stereo reconstruction.

1 Introduction
We define our shape model on an initial 3D mesh which
consists of vertices, which are points lying on the original
shape, and edges – connections between vertices. We then
assign a MRF site to each vertex and define cliques which
consist of one or more MRF sites. The MRF is specified
as a Gibbs distribution characterized by cliques (subsets
of sites) and clique potentials (clique energies), and these
cliques and clique energies can be anisotropic, i.e., can be
different in different directions and can be inhomogeneous,
i.e., can vary over the surface. In the case of time varying
models, the system state can in theory consist of the sur-
face vertices at a succession of two or more instants (i.e.,
cycles). It is this fully 3D stochastic model for the rep-
resentation and modification of surfaces and its ability to
incorporate unlimited local and global deformation proper-
ties (either physically realizable or physically unrealizable)
that is completely new, tremendously powerful and compu-
tationally fast (real time on a PC).

2 Mathematical Models
2.1 Surface Model
We assume that an initial shape provided is a triangular sur-
face mesh with N vertices. Associated with vertex pi is a

C1 = {8}
C2 = {(8, 1), (8, 2)(8, 3)}
C3 = {(2, 8, 1), (2, 8, 3)}

Figure 1: An example clique structure and 3 cliques.

site i. Hence, the MRF sites are labelled 1, 2, . . . , N where
the ith site has random variables pi = (xi, yi, zi). The vec-
tor P ≡ {p1,p2, . . . ,pN} denotes all site variables. We
denote the initial surface as the set of vertices at time t = 0
and indicate the time with a superscript, e.g., P0 denotes the
vertices of the initial surface and Pt ≡ {pt

0,p
t
1, . . . ,p

t
N}

denotes the surface vertices at time t.
A clique is a subset of indices into the set of MRF sites,

e.g., {1, 5, 3}, and has an associated clique potential func-
tion defined on the clique site variables V3(p1,p5,p3). Pc

denotes the set of site variables, i.e., vertices, in clique c.
For our example, Pc = {p1,p5,p3}. Cliques and their as-
sociated potential functions are distinguished by the cardi-
nality of the set they define, i.e., single-vertex cliques, two-
vertex cliques, three-vertex cliques, etc. We denote the sets
of such cliques and clique potentials as C1, C2, C3, . . ., and
V1, V2, V3, . . ., respectively, and C =

⋃

i Ci. For the simple
mesh with indices shown in Figure (1), an example set of
clique structures for site i = 8 and its neighbors are shown
to illustrate the correspondence of clique definitions to their
associated mesh vertices.

Cliques and clique potentials determine the forces
among MRF site variables, i.e., the surface material behav-
ior. The total energy of the MRF is described in terms of
the sum of the defined clique potentials over all cliques (see
§2.1.1).

U(P|P0) =
∑

c∈C

Vc(Pc|P
0) (1)

In general, potential functions are tailored to applications.
The surface probability distribution is modeled as a

Gibbs Distribution which is a representation for an MRF.
The Gibbs pdf pS(P|α) is specified as (2) (see §2.1.1).

pS(P|α,P0) =
1

Z
exp

{

−U(P|α,P0)
}

(2)

2.1.1 Surface Model Example
A very simple surface model has the following cliques
containing the ith site: C1 = {i} and C2 =
{(i, j1), (i, j2), (i, j3), . . .} where jk denotes the label of
a site in a clique with site i, and the jk sites are mesh
neighbors of site i, i.e. are connected by a mesh edge.
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The site clique potentials are V1(pi) = α1‖pi − p0
i ‖

2 and
V2(pi,pj) = α2‖pi − p0

i − pj + p0
j‖

2. Here the parame-
ters are the same for all sites. The potential V1 is the squared
distance from the deformed vertex pi to the initial vertex p0

i

and is a function of this local deformation from the surface.
V2 is the squared distance between the surface deformations
at sites i and j and is a function of the relative positions of
vertices at sites i and j before and after the deformation.
α1 and α2 are weighting coefficients controlling the con-
tributions of V1 and V2 to the total MRF energy. We de-
note the vector of clique potential coefficients as α, here
α = (α1, α2).

2.2 Data Model
The data is modeled by (3).

pD|S(D|P, β) (3)
This is a probability density function for the input data vec-
tor D given the surface shape P and parameters β. Here,
the components of D ≡ {d1,d2, . . . ,dM} are the data
points and β is a vector of parameters having values speci-
fied by the user.

2.2.1 Data Model Example
There are a number of data distribution models that come
to mind as appropriate. Ideally, the data should lie on the
surface we wish to represent. However, because of noise
in the data generation process, each data point is a noisy
perturbation of a point on the desired surface: but a pertur-
bation of which surface point? One approach we and others
have taken [2] is to assume an a-priori distribution for N

′

points on the surface from which the data point could have
occurred. If the perturbation distribution is isotropic Gaus-
sian having 3x3 covariance matrix σ2I, then the conditional
pdf of data-point dm given the surface S is equation (4).

p(dm|P) =
1

N
′

∑

i∈N
′

1

(2π)
3

2 |σ2I|
1

2

exp(−
1

2σ2
‖dm − pi‖

2)

(4)
Note that p(dm|P) is then a mixture of N

′

Gaussians, but it
is only the Gaussians located at the vertices that are near dm

that contribute significantly to this conditional probability.
If it is assumed that the M data points are generated as in-
dependent random vectors, then the conditional probability
p(D|P) is the product of the conditional probabilities for
the individual data points, hence, a product of mixtures of
Gaussians. Note, the pdf for data point di is characterized
by the two parameters N

′

and σ2 which control the weight
to be associated with a point and the extent of the region on
the surface that is attracted by the data point. Hence, in our
general framework from §2.2, β =

(

N
′

, σ2

)

.

2.3 Deformation
Surface deformations occur by moving the mesh vertices
P0 to a modified vertex vector P1 where P1 is:

(a) (b) (c)
Figure 2: Surface interpolations (see §2.3 for explanation).

P1 = arg max
P

ln
(

pS(P|α,P0)pD|S(D|P, β)
)

(5)

Note, pS(P|α,P0)pD|S(D|P, β) is the joint pdf of D and
P and we denote it

pD,S(D,P|α,P0, β) (6)
P1, the P that maximizes (6), is the so call MAP (maxi-
mum a posteriori probability) estimate of P given the data
D. Figure (2a) shows a surface mesh obtained from a laser
scanner. The mesh structure is irregular and contains large
holes and tears. Figures (2b) and (2c) show our low reso-
lution and fine resolution MRF mesh interpolations where
the mesh vertices from Fig. (2a) are data and a plane is the
initial MRF shape, P0. The meshes produced do not have
holes and are more regular. Our interpolation uses the sur-
face model from §2.1.1 and the data model from §2.2.1.

2.3.1 Optimization and an Example

The joint pdf (6) has an energy (1) defined for all possible
positions of the mesh vertices, i.e. values which the site
(x, y, z) random variables may assume. Optimization cor-
responds to maximizing the joint pdf (6) by applying any
standard non-linear maximization method such as gradient
ascent.

For optimization, we compute the gradient of (5) which
is fg(P) = 5P ln(pS(P|α,P0)) + 5P ln(pD|S(D|P, β))
where 5P indicates that we are differentiating with respect
to the vector of site variables P. Hence, the clique poten-
tials and data pdf combine to generate a motion vector field
for the MRF sites, fg ; this may be interpreted as a gen-
eralized force. fg is the resultant of two distinct forces :
(1) 5P ln(pS(P|α,P0)) is the force between MRF sites,
which models the intrinsic surface behavior (e.g., flexibil-
ity); (2) 5P ln(pD|S(D|P, β)) is the force exterted on the
MRF sites by the data. Hence, the cliques and their associ-
ated clique potentials exert virtual force fields on the MRF
sites.

3 Time Varying Surface Behaviors
In §2 the time index for surfaces could assume only two
values t = (0, 1), here we simply allow the index t to vary
t ∈ [0,∞) for the site random variables, Pt, the potential
weighting coefficients, αt, and the data, Dt. In this case, (7)
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denotes a time-varying pdf for 3D surfaces, or, alternatively,
can be thought of as a pdf having indexing parameters (i, t)
for site location and time.

pS(P|αt,Pt) =
1

Z
exp

{

−U(P|αt,Pt
}

(7)

3.1 Elasticity & Plasticity
Assume that the surface vertices from the previous time
step, Pt−1, remain fixed at the initial surface i.e., Pt−1 =
P0 ∀ t. If the clique potentials for the ith MRF site are
all convex quadratic functions symmetric about pi,0, then
pS(P|αt−1,Pt−1) defines a Gaussian distribution on the
MRF sites N ∼ (P0, Σ) where Σ depends on the weight-
ing coefficients αt. The maximum is located at the mean,
hence, arg maxP pS(P|αt,Pt−1) = P0. Note that the
clique potentials from §2.1.1 are a special case of this model
where αt = {α0

1, α
0
2} ∀ t. In this case, the surface will re-

turn to its original vertex positions in the absence of external
forces from data. This behavior for the MRF is analogous to
that of an elastic surface deformation for physically-based
models.

Using the same Gaussian MRF site distributions we con-
sider a new data set from time t. We optimize (8) to obtain
the deformed MAP surface Pt.

Pt = arg max
P

ln
(

pS(P|αt−1,Pt−1)pD|S(Dt|P, β)
)

(8)
To make the deformation plastic, we update the mean of
the MRF site distributions at the end of the time step i.e.,
N ∼ (Pt, Σ), and remove the data set Dt. Now our MLE
surface in the absence of data is the deformed surface Pt.
This behavior for the MRF is analogous to that of a plastic
deformation for physically-based models.

4 Example : 3D Sculpting
Interactive sculpting of free-form 3D shapes has been an
active area of research in the computer graphics community
for quite some time. Existing systems provide examples of
many different surface representations and work continues
to develop their utility for intuitive sculpting [3, 1, 6, 7]. We
present here our interactive sculpting system and explain
how the surface model is represented to a virtual sculptor
and provides a heretofore unexplored analogy to facilitate
controlled surface deformation.

Our basic sculpting system uses three clique structures :
C1 = {i}, C2 = {(i, j1), (i, j2), . . . , (i, jK)} and CK+1 =
{(i, j1, j2, . . . , jK)} where jk denotes a mesh neighbor (see
§2.1.1 for clarification) and K denotes the number of sites
that are mesh neighbors of site i. The clique potentials and
their associated cliques are provided in Table (1).

Each of the cliques and associated clique potentials in
Table (1) is assigned a descriptive phrase symbolizing how
the clique potential influences interpolations of sculpted

Description c Vc(Pc)

Mean Field 1 ‖pi − pt−1

i ‖2

Mean
Smoothing 2 ‖pi − pt−1

i − pjk
+ pt−1

jk
‖2

Edge
Preserving 2 ‖pi − pjk

‖ − ‖pt−1

i − pt−1

jk
‖

Surface
Flattening∗ K + 1 ‖κ−→v ‖2

Curvature
Preserving∗ K + 1 (κ−→v⊥

− 1

K
ΣK

k=1
κ−→v⊥

(jk))2

Symmetry
(see Fig. 4a)

2
‖pi · np‖

2 − ‖Apj · np‖
2+

‖pi × np‖
2 − ‖Apj × np‖

2

Table 1: Sculpting Clique Potentials.
∗For potentials involving curvature, i.e., κ, we have applied the method
from [5] to obtain principle curvatures and principle directions: (−→κ1,−→κ2).
In general, the notation κ−→

v
denotes the curvature in the direction of the

vector −→v .

data sets. For example, the Mean Field description is as-
signed the clique potential ‖pi−pt−1

i ‖2 which increases as a
quadratic function of the displacement of the vertex. Hence,
this potential encourages points to remain at their original or
mean position, i.e., pt−1

i for the ith vertex. Hence, we can
think of each clique and its associated clique potential as
specifying a specific type of force field for the MRF sites
which is identified by our descriptive phrase. For example,
we can refer to the mean force field as those forces which
move vertices from their current (x, y, z) position to their
original (x, y, z) position.

The relative strength of each force field type causes the
surface to interpolate the sculpted data differently. Hence,
using this force-field analogy, the sculptor can modify force
field strengths, i.e., clique potential function coefficients, to
intuitively control the surface. The user controls the 6 po-
tential function coefficients, α = (α1, α2, α3, α4, α5, α6),
for each of the rows from Table (1) which, combined with
the 2 data model parameters β =

(

N
′

, σ2

)

from §2.2.1,
makes 8 user-controlled parameters in total. Their geomet-
ric meanings are given in §4.1.

The sketched data is provided at different time instances
and is consequently a situation where the time varying MRF
models of §3 are appropriate. The sculptor is empowered to
deform the shape via a single custom built device which can
interactively (add/remove) data, control the data and mate-
rial parameters, and define primitive cliques. The sculpting
process is then described in terms of cycles. At the begin-
ning of each cycle the sculptor may do any of the following
functions:

• Introduce a data set, Dt, to the system for surface de-
formation with varying data types:
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(a) (b) (c) (d)
Figure 3: Figures (a-d) show the reconstruction of a nose
on a damaged archaeological sculpture discovered in Petra,
Jordan. (a) an image of the archetype nose used for recon-
struction (b) an interpolation of the damaged mask data (c)
interactive modification for rebuilding the missing nose us-
ing anisotropic clique potentials and only a few data points
shown in blue (d) the reconstructed mask.

– 3D space curves, i.e., 3D points obtained from
3D tracker integrated into a sculpting pen,

– Directional feature enhancements, i.e., indicate
areas to apply anisotropic diffusion,

– A cloud of 3D data points from a template.

• Make the current deformation plastic (see §3.1).
• Remove previous datasets.
• Change deformation parameters of the system.
• Change the clique structure of the system.
• Remesh regions of the surface using the method in [4].

At the end of the cycle we compute a solution to the opti-
mization problem (5) as described in §2.3.1. The system is
implemented in Java, and performs in real time for defor-
mations involving in excess of 5000 vertices.

4.1 Sculpting Potentials
For each of the potentials listed in Table (1) the time index
t − 1 refers to the time of the last plastic deformation spec-
ified by the user, see §3.1. The following list provides a
geometric interpretation of the potentials listed in Table (1)
(see §4 for Mean Field).

Mean Smoothing Strengthening this force will encourage
neighboring MRF sites to have similar dis-
placements from their original position which
makes the surface smoothly interpolate the
data.

Edge Preserving Strengthening this force will encourage
the mesh edges to remain fixed which makes
the surface material rigid.

Surface Flattening Strengthening this force encourages the
surface region to be linear in the direction of
−→v .

Curvature Preserving Strengthening this force encourages
the surface region to preserve curvature, i.e.,
mesh neighbors are encouraged to have the
same curvature in the direction of −→v⊥.

(a) (b) (c)
Figure 4: Symmetry Cliques : Spatially distant sites are
associated by their height and (x, y) positions relative to
a user-defined plane as shown in (a). In (b), we use the
symmetry clique potential from Table (1) setting A = I to
create an original sculpting of a head from an initial capsule
shape. In (c), we can change the symmetry clique potential
to be non-isometric scaling : diag(A) = (1.25, 1.25, 1).

Symmetry Strengthening this force encourages the surface
to be symmetric about a predefined plane as
shown in Fig. (4).

5 Conclusions
We have presented a novel deformable surface model and
demonstrated a sculpting system which intuitively uses this
model and interpreted it as sculpting via virtual force-fields.
Simple clique forces provide good surface interpolations as
shown in Fig. (2) and more complex forces allow for eas-
ier sculpting of useful features as shown in Figs. (3) and
(4). The power available due to the generality, versatility,
and computational simplicity of the model makes it perfect
for building arbitrary free-form shapes where the user pro-
vides data to the computer which is interpolated by the MRF
model at an interactive rate. This material is based upon
work supported by the National Science Foundation Grant
No. 0205477.
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