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Abstract

This article proposes a method for estimating the shape
of masonry elements present in the facade of a Gothic build-
ing from a single image. Our approach takes as input a rec-
ti�ed image of a Gothic building facade and user-speci�ed
side information and provides a 3D model estimate of struc-
tural elements, e.g., doorways, windows, arches and cor-
nices, within the facade as output. Facade estimation pro-
ceeds in two steps: (1) estimation of arches and rectangular
openings and (2) estimation of the masonry, i.e., mortar and
bricks, surrounding these structures. Arches and rectangu-
lar facade elements are detected and extracted using a 2-
pass algorithm. Pass 1 detects and estimates individual fa-
cade elements using active contours with shape-preserving
constraints. Pass 2 groups elements based on their shape
similarity, proximity, and horizontal and vertical positions.
Pass 1 and 2 are iterated multiple times to extract hierarchi-
cal arrangements, i.e., arches within arches that are typical
to Gothic architecture. Those pixels not included as part
of the architectural elements are considered masonry and
are segmented into two classes: (a) mortar and (b) bricks.
While current techniques use 3D scans or over-simplify fa-
cades using generic 3D models and texture-on-plane meth-
ods, the proposed work establishes promising initial steps
towards estimating a brick-and-mortar model from imagery
alone, i.e., a model of the actual facade components. Such
models can expedite preservation efforts by providing de-
tailed records of the geometry of these structures which may
collapse or require repair and provides quantitative mea-
surements of building components for use in research on
the methods and tools used to construct these buildings.

1. Introduction

This work is an initial step towards the goal of develop-
ing semi-automatic tools to ef�ciently estimate the shape of

(a) (b)

Figure 1: This article details a method for estimating de-
tails 3D models for Gothic architecture from imagery. Our
method takes recti�ed images of buildings as input and gen-
erates 3D geometric models (with texture) of the underlying
facade masonry construction as output.

masonry from imagery of historic building facades. This
is an area that has generated much recent interest within the
computer vision and pattern recognition community and is a
particularly active sub-topic within the generic area of esti-
mating 3D structure from imagery. Our initial effort inves-
tigates the masonry of Gothic building facades which we
divide into two parts: (a) facade elements; doors, windows,
and arches and (b) masonry; wall stones, mortar, and cor-
nices. The underlying assumption is that masonry elements
exhibit radiometric variations that may be automatically de-
tected and used to separate individual stones and structures
within the facade. However, researchers have noted that
this assumption is often not true. Exceptions occur when
there is very small gaps between radiometrically-similar
stones, when the mortar and stones are radiometrically sim-
ilar, and when something is deposited over the masonry that
occludes the radiometric variation, e.g., moss, paint, char-
ring. These effects are not uncommon and present signif-
icant challenges that have prevented using of imagery for
solving these problems [6].

We seek to over come some of these dif�culties automat-
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Figure 2: (a) parameters for a Gothic arch, (b) a view of
4 window panes as they appear in an edge image, (c) the
distance transform of the edge image, (d) the initial seeds
(green contours) and �nal MLE values for the 4 elements
(pink contours).

ically by assuming that the elements, i.e., arches, windows,
and doors, of Gothic buildings are highly organized, i.e.,
their global structure exhibits self-similarity and symmetry.
If true, we can use these properties to predict the shape and
position of structural elements that may otherwise be dif-
�cult to detect and estimate. For example, buildings have
foundations, �oors, and a roof. Exterior walls can be either
plain, adorned with some geometric detail, e.g., cornice,
or perhaps include sub-structures such as windows. These
components and their substructures adhere to rigorous geo-
metric constraints, e.g., windows are generally rectangular
and are oriented to align with the rectangular geometry of
the wall that includes the window.

In terms of scope, this article has generic relevance to
researchers wishing to impose strict constraints upon a de-
formable model to ensure that solutions represent plausi-
ble instantiations of the object(s) that are being recognized
within an image. It is also deeply relevant to the emerg-
ing area within vision and pattern recognition concentrating
on cultural heritage applications. In this regard, the work
herein represents an important �rst step towards developing
applications that can help archaeologists and cultural her-
itage researchers in documentation, visualization, and vir-
tual tourism as it pertains to historic Gothic buildings.

2. Related Work

We divide the research related to this topic into two cate-
gories: (1) procedural model-based estimation (2) methods
that incorporate 3D data (3) image-only methods.

Procedural models as presented in [14, 15, 2, 13] ap-
ply custom-speci�ed shape grammars that can be applied
to automatically generate buildings including archaeologi-
cal structures such as the Mayan Puuc building from [14].
Work in [16] and [8] combines imagery with procedural

models for the purpose of estimating repeated facade ele-
ments, particularlyrectangularstructures, within facades.
Here the authors estimate a grid that divides the facade into
tiles such that each tile can be decomposed into elements.
The shape and size of the facade elements in each tile are
estimated with the aid of the shape grammar and a database
of 3D models to generate the �nal 3D model. We also men-
tion similar work in [10] that uses a grammar-like method to
segment large structural elements within facades. These ap-
proaches have been shown to work well for contemporary
buildings which tend to be de�ned on a rectangular grid,
e.g., apartment buildings and of�ce buildings. These mod-
els also represent walls as texture-on-plane which prohibits
manipulation and shape measurements on individual stones
within wall sections.

A number of methods have been proposed that integrate
3D measurements with texture data to extract structural es-
timates of building facades. In most cases depth measure-
ments are obtained via multi-view reconstruction [17, 20,
19, 4] but some work incorporates the use of triangulation-
based laser scanning[18] or LIDAR (LIght Distance and
Ranging) [3]. Of these methods, only[18] attempts to esti-
mate the underlying structure of stones within wall elements
at the expense of requiring a 3D laser-scanner.

Work in [10, 7, 6, 12, 11] use single images to esti-
mate the shape of stones within walls.[6, 12, 11] concen-
trates uses multispectral imaging (conventional and infra-
red cameras) and pattern recognition techniques to segment
bricks for the purpose of identifying regions where a wall
has been damaged.[7] discusses �eld work where pho-
togrammetry was used to compute recti�ed imagery that
were manually traced to generate wall drawings for the St.
Petri cathedral in Bautzen, Germany.

In summary, procedural models and facade reconstruc-
tion from images tend to seek solutions that are visu-
ally attractive and, for the purposes of cultural heritage
and archaeology, over-simplify the estimated structural ele-
ments with texture-on-plane models. Other approaches re-
quire some type of specialized equipment (laser scanners or
multi-spectral imaging) and are intended for use on images
having only masonry, i.e., no windows or arches may be
present.

This work seeks extends the state-of-the-art in this area
in three ways:

1. A MLE model is speci�ed that estimatesentire ele-
mentswithin the facade image rather than piecing to-
gether contours where these elements arenon-trivial
in shape(Gothic arches) and include shape-constraints
that ensure that MLE solutions estimated from our
model represent plausible real-world elements.

2. The proposed approach incorporates considerations
for important architectural patterns such as the self-
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Figure 3: (a) edge image for the image from Fig1, (b) distance transform of the edge image, (c) optimizationof MLEs for
the facade elements are shown with initial values (green contours) and �nal values. Signi�cant variation can exist in the
estimated elements due to local minima within the likelihood function. A second step merges similarly shaped elements and
and re�nes their shape parameter values (see Fig.4).

similarity of building elements and hierarchical nest-
ing as they manifest themselves for rectangular shapes
and Gothic arches.

3. The 3D models generated from our approach provide
building-block-level detail which is unprecedented in
the literature and is of importance for archaeological,
architectural and cultural heritage applications.

3. Methodology

We proceed by specifying a parametric model for Gothic
arches similar to that described in [5]. Our model assumes
that the facade image has been recti�ed such that the ground
plane of the building is aligned with the imagex� axis, i.e.,
the facade elements are assumed to be oriented vertically
within the image. In this case, the window can be summa-
rized in terms of �ve parameters which collectively make
up the unknown parameter vectorQQQ = [ x0;y0;h;w;v]t (see
Fig. 2 for a de�nition of each of these parameters). For
purposes of visualization, we de�ne a sequence of �ve 2D
pointsp1;p2;p3;p4;p5 that may be easily computed from
the parameter vector as indicated in Fig.2. The relative po-
sitions for these points is highly constrained to ensure that
the window shape and orientation remains consistent with
real-world Gothic arches using four constraint equations:

p2 = p1 +
�

w 0
� t

p3 = p2 +
�

0 h
� t

p4 = p3+ p5
2 +

�
0 v

� t

p5 = p1 +
�

0 h
� t

(1)

Since bothp3 andp5 depend on the same parameter,h,
the 5 2D points have 5 constraints and 5 free parameters.
Elements within the facade image may correspond to door-
ways, windows, and cornices on the building and may have
a rectangular shape or the shape of a Gothic arch. Typi-
cally these elements generate contours in the edge image of

the building. This is particularly true for windows and door-
ways, as they are typically constructed of different materials
(stone/glass or stone/wood). Yet detection of protruding el-
ements is more dif�cult as they tend to be constructed of the
same material (stone/stone). For this reason it is particularly
dif�cult to extract these structures using edge detection and
contour linking as there are large gaps created in the con-
tours that make up the element boundary (see Fig.2(b)).

We adopt a Bayesian model for estimation of complete
elements, i.e., arches or rectangular structures, that ex-
presses the likelihood of the image data given a speci�c in-
stance of a arch/rectangular element, i.e.,p(D jQQQ) whereD
denotes image data andQQQ denotes the element. The proba-
bility is determined by contour integration, i.e., we traverse
the window contourC in the image speci�ed byQQQ and in-
tegrate the distance between the element contour and the
closest edge pixel. Hence, values ofQQQ that pass through
a large number of edge pixels will have higher likelihood.
For implementation, we perform edge detection (Prewitt's
method) to produce an edge image (Fig.2(a)) (note no edge
linking should be done). We then compute the distance
transform (pseudo-Euclidean) of the edge image,D(x;y)
(Fig. 2(c)), which provides the minimum distance to an
edge pixel for each(x;y) position. We may then specify a
likelihood distribution for the unknown element parameters
which is assumed to be an exponential distribution de�ned
over the values of the distance transform integrated at the
locations speci�ed by the element contour, i.e., the contour
integral

�
D(CjQQQ)dsas shown in (2).

p(D jQQQ) =
1
k

e�
�

D(C jQQQ)ds (2)

whereds denotes a differential portion of the contour
arc-length. Estimation then reduces to searching through
parameter space for maxima ofp(D jQQQ), i.e., maximum
likelihood estimation. Note that there will be many local
maxima and multiple instances of elements will generator
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Figure 4: (a) an image of a Gothic facade, (b) detected archesafter MLE estimation and merging (c) detected groupings of
arches and their hierarchical relationships (d) a textured3D model obtained from (c).

multiple local maxima in the likelihood distribution in pa-
rameter space.

Detection of these elements may then be accomplished
via peak detection on the likelihood distribution. Yet, ex-
haustive computation of all possible values forQQQ and sub-
sequent peak detection is similar in many ways to a general-
ized version of the Hough transform for detection of Gothic
and rectangular elements and is prohibitively expensive in
terms of computation. Instead, we proceed by seeding small
windows within peaks of the distance transform, i.e., we
guess at values forQQQ, and then use conjugate gradient meth-
ods to compute the closest local maxima of the likelihood
distribution (Fig.2(d)). Seeds are initialized at peaks in the
distance transform and only those parameter vectors having
signi�cant probability after maximization are kept as de-
tected facade elements. In this regard, maximization of the
likelihood distribution is very similar to �tting a constrained
snake as in [9, 21].

Once elements have been detected, we detect repeated
elements that may exist within the facade. This is accom-
plished by clustering the detected elements based on their
shape estimated shape parameter values;(h;w;v). Clustered
elements are then merged into a single model having a dis-
tinct sequence of(x0y0) parameters (one for each element)
and a single set of shape parameters(h;w;v) and maximum
likelihood estimation as previously described is performed
again over these parameters. This step serves to group to-
gether self-similar elements and provides a re�ned the es-
timate of the element shape parameters by utilizing all of
the available image data for computation of a global solu-
tion (blue elements of Fig.4(c)). Using prior knowledge of
the geometric hierarchy's present in Gothic architecture,we
then guess at new values forQQQ = [ x0;y0;h;w;v]t that cor-
respond to plausible arches that may contain grouped ele-
ments and perform MLE, peak detection, and self-similarity
merging for these elements (red elements of Fig.4(c)).

Image pixels associated with the estimated facade ele-
ments are removed from the image and the remaining pix-
els are considered free-form masonry. We apply a water-
shed algorithm and custom-merging criterion approach to

segment these pixels into two classes: (a) stones and (b)
mortar. Our watershed algorithm is that described in[1]
and our merge criterion is based on color similarity. Such
simple merge criterion can effectively segment highly con-
trasting mortar and stone masonry such as granite and ce-
ment but is prone to failure when contrast between these
elements is more subtle. For each extracted stone boundary,
a 3D model is estimated by extruding the boundary a user-
speci�ed distance. The resulting brick and element blocks
together specify our 3D block-level estimate of the facade
geometry.

4. Results

Figure4 shows our results for two different Gothic fa-
cades: (1) the side of a Medieval church exhibits 2-level
grouping and group self-similarity and (2) a facade from a
Medieval chapel. Note that self-similarity and grouping is
a necessary part of the estimation process since there is sig-
ni�cant variation present in the compute MLEs. Further,
detection of the Gothic arch hierarchy would be very dif�-
cult without a good initial guess for the parameters which
can be obtained via grouping.

Figure 5 shows results for our automatic segmentation
of mortar and bricks for a facade. In this situation, many
of the facade stones may be accurately estimated yet there
are locations where the segmentation fails. Current meth-
ods for documenting walls based on hand drawings require
much time and artistic ability and use of 3D laser scanning
for stone detection can also be time consuming aside from
the requirement of owning this costly and highly special-
ized equipment. Our initial results show promise for semi-
automatic image-based identi�cation of stones within mor-
tar.

5. Conclusion

This paper proposes a novel method for estimating de-
tailed 3D model of Gothic facades that consist of rectangu-
lar and arched elements. We use Bayesian MLE methods to
estimate parameters for the facade elements and then apply
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Figure 5: (a) shows a facade consisting of irregularly shaped bricks and windows where the mortar generally contrasts well
with the wall stones. (b) shows our watershed-based binary segmentation of the facade into stones (black) and mortar (white).
(c) shows a small region of this facade image and (d) shows oursegmentation. In these highly contrasting regions, automatic
segmentations of mortar and brick can provide accurate estimates of stone shapes. However, such methods break down in
regions of low contrast as is the case in regions around the windows.

clustering to �nd elements having similar shapes. MLE is
performed iteratively to re�ne the shape parameters of ele-
ments within a single group and for detecting hierarchical
(nested) instances of Gothic arches typical to this architec-
tural style. Detailed 3D models are constructed from the es-
timated element parameters that provide an unprecedented
level of detail for building modeling which is of particular
import for archaeologists, architects and cultural heritage
researchers.
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