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ABSTRACT

A system for the semi-automatic reconstruction of highginented bone fractures, developed to aid in treat-
ment planning, is presented. The system aligns bone fragsneiaces derived from segmentation of volumetric
CT scan data. Each fragment surface is partitioned intatngnd fracture-surfaces, corresponding more or less
to cortical and cancellous bone, respectively. A user th&ractively selects fracture-surface patches in pairs
that coarsely correspond. A final optimization step is penfed automatically to solve the N-body rigid align-
ment problem. The work represents the first example of a 3@ fr@cture reconstruction system and addresses
two new problems unique to the reconstruction of fracturedels : (1) non-stationary noise inherent in sur-
faces generated from a difficult segmentation problem ahthépossibility that a single fracture surface on a
fragment may correspond to many other fragments.
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Figure 1. Radiographs of a range of comminuted tibial pilon factuvasying in the number of bone fragments, the amount
of fragment dispersal and the degree of intra-articulagrmesibn into the ankle.

1. PURPOSE

Severe limb trauma often leaves patients with highly fragt@e bones, requiring surgical reconstruction. Ob-
taining an accurate restoration of the original unbrokemeldoom its fragments is a critical factor in determining
the clinical prognosis, particularly in those cases whbeeftacture extends into an articular joint such as the
knee or ankle. This paper presents a system for semi-automdtial reconstruction of bone fractures from
volumetric CT data.

Extremity injuries that involve comminuted bone fractuedsost always occur as a result of high-energy
trauma such as from vehicular accidents or falls from a heigeyond stabilization, treatment goals include
achieving expeditious bony union in a position of accemdlvhb alignment, and avoidin@ost-Traumatic
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OstedArthritis (PTOA) when there is extension into an articulanjoAs a point of reference, for axial “pilon”
fractures of the distal tibial articular surface (Figure the incidence of PTOA of the ankle is in the range of
60% to 80% 2

Post-traumatic OA is a serious health condition that oféal$ to substantial pain, disability, loss of work,
and decreased general health status. Its overall advepaeiran an individual's physical and psychological
well-being is comparable to that of other major disordechsas stroke, heart disease, or diabét®he societal
cost of PTOA is high (estimated at $12 billion/year in the *Ssince pain and loss of function frequently
leads to loss of work capacity. Severe articular fracturestncommonly occur in young adult patients. If
PTOA develops, patients may require reconstructive syrirriuding major procedures such as joint fusion or
joint replacement. When these procedures are performeg/dauag patient, repeat surgeries throughout their
lifetime may be necessary to maintain function, furthesiraj the cost, and in some cases resulting in long term
disability and unemployment.

Literature regarding semi-automatic or completely autiecn@construction of bone fragments is surpris-
ingly sparse given the very large body of research on thetopbone segmentation, medical image regis-
tration? ® and surface registratioi1® Ron et al. reported a computerized bone reconstruction system, but it
was restricted to simple two-fragment fractutésThis paper extends recently developed techniques from the
computer vision and computer graphics community for retantng broken archaeological artifatts for
application to reconstructing highly fragmented bonetirees. While some of these techniques are directly
applicable to bone reconstruction, there are many newarigdls. We address the following two significant
challenges in this paper:

Noise— (CT data are less accurate than laser scan data and setfjorenfahe CT data amplifies noise in an
unpredictable manner)

Archaeological fragment reconstruction algorithms taflicuse laser scan data which provide surface mea-
surements with errors 0.22mm in any directior® or significantly better, e.gs. 0.04mm for the ShapeGrab-
ber scannel® The noise for these measurements is typically the same isiagle direction, which makes them
well suited for algorithms that are optimal for sphericaiymmetric (isotropic) noise conditions.

Volumetric CT data from clinical applications typicallyveaa resolutions of approximately2 — 0.5mm in
the plane of acquisition, and slightly largéx3 —0.5mm) in the direction along which images are acquitédn
addition, CT scan data reflect an averaging of tissue deosgéla finite slice volume/thickness, with associated
partial volume artifacts. Extracting surfaces from voluneeCT data involves solving a difficult segmentation
problem. As a result, surfaces segmented from CT data éxiiiificantly more variability than is present
in laser scan data. Additionally, this noise is non-statigni.e., it may be substantially more pronounced in
difficult segmentation regions; further, the structurehig noise is dependent on biases present in the underlying
surface-extraction segmentation algorithm.

Fracture Generation Process — (Bones break differently than archaeological artifacts)

Since archaeological artifacts are typically not congedof bone, and certainly not living bone tissue, the
generative fracture processes for ancient artifacts and tissue are somewhat different. Archaeological frag-
ments typically consist of a hard brittle material such agst ceramic, or glass. In these cases fracture-surfaces
may often, but not always, be extracted by locating ridgeasb diacontinuities on the fragment surfacéhe
extracted fracture surfaces are then assumed to correspmadingle fracture surface from another fragment
Note that this assumes that segmented fracture surfacesahito-1 correspondence, i.a.fracture surface
extracted from a given fragment is assumed to match with adeoaly one other fracture surface from some
other fragment.



In contrast, living bone tends to splinter when subjectebigh-energy trauma, generating pieces that not
uncommonly have a single, smoothly varying fracture serfdat may correspond to one, two or more frag-
ments. For the studied tibial pilon fractures, we found thatproximal end of the remaining intact portion of
the tibia (ourbase fragmenttypically presented the largest fracture surface. Mahgiotragments share smooth
surface regions that, when reconstructed, match with @tharrge tibial base fragment and with other smaller
fragments (see Figure 1).

As a direct consequence of these differences in fracturavibeh) the fracture surface correspondence as-
sumptions for archaeological artifacts canrbechmore restrictive than those for bone reconstruction. $peci
ically, the bone reconstruction algorithm must allow fadture-surfaces that are not 1-to-1, i.e., typical bone
fragments may have multiple fracture-surfaces, and eaduire-surface magartially matchwith some other
partial fracture-surface from another bone fragment. In some cHsm® are fracture-surface regions that do not
strictly have a compatible match. This may occur when seggtien variability leads to open gaps or interpen-
etrating surfaces when the fragment surfaces are propkghed elsewhere. This makes the surface matching
stage for bone reconstruction much more difficult than retraction of archaeological objects and precludes
application of 1-to-1 surface matching techniques suchaset proposed by Huareg al *4

2. METHODS

The system is divided into four parts:

1. Segment the volumetric CT datawith an emphasis on generating discrete closed surfaegdragment
surfaces that may later be aligned (see §2.1).

2. Generate a surface mesh for each segmented bone fragmeémbap each point on the surface mesh to a
Hounsfield intensity (for the 3D surface poixt this map is referred to af(x;) ) from the 3D CT scan
volumelI(z,y, z) using a 3Dmax() filter centered about the voxel containing back-projectbaach 3D
fragment surface point into the CT scan volume (see §2.2).

3. Segment fragment surfaces into intact- and fracturiaees using intensities from step 2 (see §2.3).

4. Coarsely identify matching patches over contiguoudtdir@esurface regions, utilizing an interactive user
interface. Optimize the specified fragment alignments tmmstruct the original bone from the bone
fragments, using the interactively specified regions (£4)8

2.1. CT Data Segmentation

CT studies were obtained from twenty-two tibial pilon fuaret cases, with axial in-plane resolutions ranging
from 0.2 to 0.5 mm and slice spacing of 0.3 or 0.5 mm. This mefeaas carried out with Institutional Review
Board approval, and informed consent was obtained fromuddjests. Fracture fragment boundaries were
identified slice-by-slice from CT datasets using validadégital image analyses. 18 A full 3D segmentation
was completed in five of the cases using purpose-written coRIAATLAB (The MathWorks, Inc., Natick, MA).

Bone surface segmentations within each slice provide restiynates of true surface geometries. The seg-
mentation algorithm applied is not linear, which complksathe relation between the known (or possibly esti-
mated) noise distributions present in the measured CT (sfmld) intensities and the noise present in the spatial
positions of the segmented surface locations. Hefice;) positions from the segmented CT slices are seen as
noisy estimates of the true surface geometry, where eaci ipaé a unique unknown noise distribution.
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Figure2. These two CT slices from a comminuted fracture of the digia typify the challenges in estimating the location
of bone fragment fracture-surfaces. The intersection efym®&nted bone surface with the image slice is depicted engre
for each image. Figure (a) depicts a situation where therapphone interior has higher intensity than that of theeoqrt
owing to the proximity to the subchondral bone underlyirgdnkle articular surface. Figure (b) depicts a situatiorngh
the estimated surface segmentation lies away from thediaaion of the cortical surface.

2.2. Using CT Intensitiesto Detect Fracture Surfaces

In this section, we present our techniques for identifyimg $ubset of segmented surface points that correspond
to fracture surfaces, i.e., surface regions generated Wwbeea fragments have broken apart. To do so, for each
3D surface point; = (x,y, z)! we estimate a Hounsfield intensity denotgck;) from the segmented bone
surfaces. Since cortical bone tissue density differs aaitly from cancellous bone tissue, the Hounsfield
intensity at a surface location aids in delineating intaface from fracture-surface. In this step we take
advantage of the fact that the vast majority of fractuream@fin the metaphyseal region (near the joint surface)
is from lower density bone. For both estimation and clastifin of the surface-point intensities we adopt a
rationale which attempts to minimize the probability of rolassifying an intact-surface (cortical bone) point as
a fracture-surface (cancellous bone) point, i.e., we ahaahreshold- to minimize type | errors in making the
classification.

(@) (b)

Figure 3. (a) High intensity circular regions depict thick corticarie tissue from the proximal midshaft of the tibia. (b)
More distally, there is much less contrast between corindl cancellous bone tissue regions. This change in theasbntr
between cortical and cancellous tissue presents challdndeone fragment segmentation and accurate fracturaesurf
point classification.
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Figure 4. A boxplot of cortical tissue Hounsfield intensity as a fuontiof slice index. Slice O denotes a slice from the
bone mid-shaft and slice 260 denotes the last slice fromigtaldibia that contains bone fragment voxels. Note that th
variance of cortical tissue voxel intensities increases|, their median intensity value decreases, especiallynarslice
230 which is an area of difficulty for segmentation.

Typical long bones (such as the tibia and femur in the leg}isbof cortical bone tissue at the outer surface
and cancellous bone tissue in the bone interior. Corticaéhissue is very dense, typically having CT intensities
I(z,y,z) € [900—1800] Hounsfield units. For the long bones of the lower extrem#ystadied in this paper, this
tissue is thickest along the bone mid-shaft and becomeghierin metaphyseal regions near the articular joints.
Cancellous tissue has varying density, typically havingi@@nsitiesI(x, y, z) € [500— 1200] Hounsfield units.
These bone density relationships are further complicatd¢itll immediate vicinity of the articular joints (termed
subchondral bone regions) where the specific functionalaghel® produce a somewhat different bone structure
at the macroscopic level.

As cancellous bone tissue typically has a substantiallyefoiounsfield intensity than cortical bone tis-
sue, and is found exclusively within the bone interior, weleit the Hounsfield intensities in the vicinity of
segmented surface points to distinguish between intataemipoints and fracture-surface points. This is a typ-
ical two-class problem to which there are well-known solns® Yet, there are two difficulties which make
identification of fracture-surfaces on segmented bonesesfa non-trivial problem:

1. Estimated surface locations from the surface segmentatiay lie away from the true location of the
cortical bone surface as shown in Figure 2.

2. Cortical bone tissue becomes very thin and less densetal dnd proximal regions of bones. Figure 3
shows CT slices that exhibit this behavior and Figure 4 plewia statistical analysis of this behavior as
a function of location along the limb-bone shaft, startihthe mid-shaft (slice index 0) and extending to
the fragments of the distal tibia (slice index 230).

These problems were addressed by estimating bone surfizeesitites and classifying them to minimize
the possibility of mis-labeling an intact-surface pointafacture-surface point. First, we address problem
(1) by applying a standard 9x9x9az() filter as defined in standard image processing t€iBhis provides a



conservatively-high estimate of the Hounsfield intensitgach surface point and assumes a maximum deviation
of up to 4 pixels between the computed surface segmentatidritee true bone surface. Second, we address
problem (2) by minimizing the probability of mis-classifyg an intact-surface point as a fracture-surface point,
i.e., we choose a threshotdto minimize type | errors.

2.3. Fragment Surface Segmentation

To solve the binary classification problem, a mixture modaelsisting of two Gaussian probability distributions
is fit to the histogram of estimated fragment surface intessi(see Figure 5(a)). As mentioned previously, a
thresholdr is selected to minimize type | errors for classification of thtact-surface intensities and subse-
quently applied for intact-surface / fracture-surfacensegtation (see Figure 5(b)). The fracture surface is then
the largestontiguousregion of fracture-surface points resulting from the dfasgtion step (see Figure 5(c)).
Note that two surface points; andx; are members of a single contiguous fracture-surface refjibare exists

a path along edges of the surface mesh which conngcéidx; and only traverses points considered to be
fracture-surface points.

2.4. Surface Alignment

For lack of areliable 1-to-1 fracture surface classifierrelg on minimal, yet necessary, user interaction. Here a
user coarsely subdivides segmented fracture-surfacen®gito pairs of surfaces that are likely to, but need not
exactly correspond. Using these fracture-surface paims,lti-body alignment scheme following that of P8illi

is applied, which uses a modified metric for the Iterativesgki Point (ICP} fracture-surface alignment step.
Our modification consists of two terms: (1) a point-to-pldfgclidean distance mettftand (2) an intensity
matching metric’. °

We align points on one surface to the other surface by minimithe distance between the points on one
surface to the plane defined by the nearest point and itsiatsdoormal on the other surface. For each point-to-
plane distance being matched (and summed) there is a waagttefficient as defined by the joint-likelihoods
described below. This helps matched surfaces to join shobyhemphasizing good matches at the perimeter.

e=min > p(f(xi)lwo)p(f(y;)lwo) [xi — projn, (Ry; + )]
™ (i,7) pairs

WhereR is an unknown 3x3 rotation matrix, is a 3x1 translation vectofyrojy, (v) is the projection of
vectorv into the plane defined by the poirf and its associated surface normalandp( f (x;)|wo)p(f(y;)|wo)
is the joint-likelihood that the point paiix;,y;) come from bone tissue close to the outer surface, i.e., the
probability that the intensity observed at poxt f(x;), comes from the cortical tissue class denoted here as
classwy.

This fusion of matching surface geometry and Hounsfieldnsitées is more robust than using geometry
alone, as it takes into account the fact that surface estgnage., segmentation results, tend to be more accurate in
regions of high contrast in the CT data. In the case of comtathbone fragment segmentation, the background
consists mainly of soft tissue which has a low CT intendity,y,z) € [0 — 600] Hounsfield units. Since
cortical bone tissue regions have good contrast with régpdiae soft tissue background, estimates of the shape
and location of such regions are more accurate than thessigstimates of cancellous tissue regions. The term
p(f(x:)|wo)p(f(y;)|wo) takes this into account by providing a weighting coefficinieach matched geometric
point pair. The weighting is the product of the probabilityat each of the points within the matched point pair
(x4, y;) comes from cortical tissue. This probability may be comguising the estimated distribution for the
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Figure 5. Segmenting fragment surfaces: (a) the normalized digtobwf estimated Hounsfield intensities for the bone
fragment surface points shown in (b,c). The distributioréen as a mixture of two Gaussians and the fit Gaussians are
plotted for cancellous tissue (shown in red) and corticgdue (shown in green). A conservative thresholg 0.85 is
chosen to minimize the probability of mis-classifying ictt@urface points as coming from a fracture surface. (b) The
resulting segmentation, where points classified as bahgnigi the intact-surface are shown as blue and fracturesarf
points are shown as red. (c) The estimated fracture sutfaeeshe largest contiguous region of fracture-surfamets

on each fragment, are shown here. (d) An aligned recongiruct the fragments demonstrates the excellent qualitpef t
reconstruction — each fragment is colored differently @&éor details).

intensities of cortical surface points computed in §2.3 simolwn as the rightmost curve in Figure 5(a). Since
the intensity assumed by each surface point is considerée independent and identically distributed with
the estimated distribution from §2.3, the produ€f (x;)|w.)p(f(y;)|wo) is equivalent tap(f(x;), f(¥;)|wo)s
which is the joint-likelihood that the intensities estimdfor the point paifx;,y;) are from cortical bone tissue,
referred to as the clasg). This coefficient is larger for matched point pairs with higbunsfield intensities than
those with lower Hounsfield intensities, which makes fragtradignments more sensitive to matched surface
point pairs with high Hounsfield intensities.

3. RESULTS

Figure 6(a) shows an iso-surface representation of a tiah fracture test case. The nature of the bone
fragmentation results in the CT iso-surface being unabldigoriminate between different bones, let alone
between bone fragments. Using the segmentation algorittbum §2.1, eighteen bone fragments were identified
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Figure 6. An overview of the fracture fragment identification and nestouction system: (a) an iso-surface of a fractured
tibia, (b) segmentation of the CT scan data generates thsclesed fragment surfaces shown in different colors (c)
fragment surface points are then divided into intact-sgrfaoints (green) and fracture-surface points (blue) @jtéme
surfaces are subdivided interactively, here, black and tdgions denote sub-regions of various fragment’s fraesurface
(e-f) two views of automatically aligned fracture-surfatd-regions using a multi-body surface alignment algorith

within the CT scan (Figure 6(b)). In this case there were @rfrants with sufficient volume (size) to be deemed
of clinical importance. Assembly of these 7 fragments togfiraximately 5 minutes of user interaction (Figure
6(c) and (d)), and just a few seconds of reconstruction alggmt processing time (Figure 6(e) and (f)). The
reconstruction obtained is excellent, as readily judgedsbyisual appearance.

4. CONTRIBUTION

While intra-operative navigation tools exist to aid in restuction of long-bone fracturés these systems are
restricted to simple two-fragment fractures. The presksistem represents the only example (to the authors’
knowledge) of a system for computer-assisted 3D recorigiruof highly fragmented bone fractures. The
system also represents a novel integration of bone fragmefatce segmentation from CT data, bone fragment
surface segmentation from Hounsfield intensities, and 3facel registration techniques. Modifications were
made to accommodate interactively solving the 1-to-1 epwadence problem for sub-regions of fragment



fracture surfaces. Common-practice multi-view regigtratechniques were fused with a new probabilistically
inspired alignment error metric for reconstruction.

We

5. CONCLUSIONS

have described a novel system for the semi-automatiasérc@tion of highly fragmented bone fractures.

The system represents the first fully-3D interactive retorton system available and is a logical extension of
a system developed to reconstruct archaeological objemts their fragments. The system addresses difficult
challenges related to the accuracy of segmented surfaoéspoid the fact that a single fracture surface on a
fragment may correspond to many other fragments. The megudystem allows for a semi-automatic recon-

struction of the bone fragments that is critical for promigligood prognosis for these cases that are particularly

diffi

cult to reconstruct.
This work was supported by grants from the NIH (AR046601 aR@48939) and the AO Foundation,

Switzerland.

10.

11.

12.

13.

14.

15.

16.
17.

REFERENCES

. J. L. Marsh, S. Bonar, J. V. Nepola, T. A. Decoster, and $HuRwitz, “The use of an articulated external fixator for
fractures o fthe tibial plafond,Journal of Bone and Joint Surgeryol. 77A, pp. 1498-1509, 1995.

J. L. Marsh, D. P. Weigel, and D. R. Dirshl, “Tibial plafofiéictures. how do these ankles function over time?,”
Journal of Bone and Joint Surgeryol. 85A, pp. 287-295, 2003.

A. Praemer, S. Furner, and D. Riddysculoskeletal Conditions in the United StatBe®semont, IL: AAOS, 1999.

T. D. Brown, R. C. Johnston, C. L. Saltman, J. L. Marsh, arsl Buckwalter, “Posttraumatic osteoarthritis: a first
estimate of incidence, prevalence, and burden of dised&&thop Traumavol. 20, no. 10, pp. 739-744, 2006.

W. Wells, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinf$ulti-modal volume registration by maximization of
mutual information,Medical Image Analysjsol. 1, no. 1, pp. 35-51, 1996.

K. Li, X. Wu, D. Chen, and M. Sonka, “Optimal surface segtaéion in volumetric images — a graph-theoretic
approach,”

. A.Johnson and S. Kang, “Registration and integratioextfired 3-d data,” ifProc. Int. Conf. on 3D Digital Imaging
and Modeling pp. 279-290, 1994.

K. Pulli, “Multiview registration for large data sets,hiProc. Int. Conf. on 3D Digital Imaging and Modeling
pp. 160-168, 1999.

G. Godin, M. Rioux, and R. Baribeau, “Three-dimensiorgiistration using range and intensity information,” in
SPIE vol. Vol. 2350: Videometrics Ill, pp. 279-290, 1994.

Y. Chen and G. Medioni, “Object modelling by registrataf multiple range imageslinage and Vision Computing
vol. 10, pp. 145-155, 1992.

O. Ron, L. Joskowicz, A. Simkin, and C. Milgrom, “Compub@ased periaxial rotation measurement for aligning
fractured femur fragments: Method and preliminary resuliecture Notes in Computer Scieno®. 2208, pp. 17—
23,2001.

A. Willis, D. Cooper,et al, “Bayesian Pot-Assembly from Fragments as Problems ineépéwal-Grouping and
Geometric-Learning,” inCPR, vol. Vol. lll, pp. 297-302, 2002.

G. Papaioannou, E.-A. Karabassi, and T. Theoharis,df&nuction of three-dimensional objects through maighin
of their parts,"IEEE Trans. on Pattern. Anal. and Mach. Intellol. 24, no. 1, pp. 114-124, 2002.

Q. Huang, S. Flory, N. Gelfand, M. Hofer, and H. Pottm&Reasembling fractured objects by geometric matching,”
in Proc. of SIGGRAPHBoston, USA), July 2006.

Konika Minolta, Sakai, Osaka JapaftyID 910 Non-Contact 3D Digitize2006.

ShapeGrabber Inc., Ottawa, Cand@laM330 3D Digitizer

D. D. Anderson, V. Muehling, J. Marsh, and T. Brown, “Rseddentification of bone fragment boundaries to assist
in reduction of highly comminuted fracture€bomputer-Aided Surgeryol. 9, no. 3, p. 116, 2004.



18. C. Beardsley, C. Bertsch, J. Marsh, and T. Brown, “Inégnfnentary surface area as an index of comminution energy:
proof of concept in a bone fracture surrogafimtirnal of Biomechani¢wsol. 35, no. 3, pp. 331-338, 2002.

19. R. O. Duda, P. E. Hart, and D. G. StoHattern ClassificationWiley-Interscience, 2nd ed. ed., 2000.

20. R. C. Gonzalez and R. E. Woodisiage ProcessingPrentice Hall, 2nd ed. ed., 2000.

21. P.Besl and N. McKay, “A Method for Registration of 3-D $ka,”"PAMI, vol. 14, no. 2, pp. 239-256, 1992.



