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ABSTRACT

A system for the semi-automatic reconstruction of highly fragmented bone fractures, developed to aid in treat-
ment planning, is presented. The system aligns bone fragment surfaces derived from segmentation of volumetric
CT scan data. Each fragment surface is partitioned into intact- and fracture-surfaces, corresponding more or less
to cortical and cancellous bone, respectively. A user then interactively selects fracture-surface patches in pairs
that coarsely correspond. A final optimization step is performed automatically to solve the N-body rigid align-
ment problem. The work represents the first example of a 3D bone fracture reconstruction system and addresses
two new problems unique to the reconstruction of fractured bones : (1) non-stationary noise inherent in sur-
faces generated from a difficult segmentation problem and (2) the possibility that a single fracture surface on a
fragment may correspond to many other fragments.
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Figure 1. Radiographs of a range of comminuted tibial pilon factures,varying in the number of bone fragments, the amount
of fragment dispersal and the degree of intra-articular extension into the ankle.

1. PURPOSE

Severe limb trauma often leaves patients with highly fragmented bones, requiring surgical reconstruction. Ob-
taining an accurate restoration of the original unbroken bone from its fragments is a critical factor in determining
the clinical prognosis, particularly in those cases where the fracture extends into an articular joint such as the
knee or ankle. This paper presents a system for semi-automatic virtual reconstruction of bone fractures from
volumetric CT data.

Extremity injuries that involve comminuted bone fracturesalmost always occur as a result of high-energy
trauma such as from vehicular accidents or falls from a height. Beyond stabilization, treatment goals include
achieving expeditious bony union in a position of acceptable limb alignment, and avoidingPost-Traumatic
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OsteoArthritis (PTOA) when there is extension into an articular joint. As a point of reference, for axial “pilon”
fractures of the distal tibial articular surface (Figure 1), the incidence of PTOA of the ankle is in the range of
60% to 80%.1, 2

Post-traumatic OA is a serious health condition that often leads to substantial pain, disability, loss of work,
and decreased general health status. Its overall adverse impact on an individual’s physical and psychological
well-being is comparable to that of other major disorders such as stroke, heart disease, or diabetes.3 The societal
cost of PTOA is high (estimated at $12 billion/year in the U.S.),4 since pain and loss of function frequently
leads to loss of work capacity. Severe articular fractures most commonly occur in young adult patients. If
PTOA develops, patients may require reconstructive surgery, including major procedures such as joint fusion or
joint replacement. When these procedures are performed in ayoung patient, repeat surgeries throughout their
lifetime may be necessary to maintain function, further raising the cost, and in some cases resulting in long term
disability and unemployment.

Literature regarding semi-automatic or completely automatic reconstruction of bone fragments is surpris-
ingly sparse given the very large body of research on the topic of bone segmentation, medical image regis-
tration,5, 6 and surface registration.7–10 Ron et al. reported a computerized bone reconstruction system, but it
was restricted to simple two-fragment fractures.11 This paper extends recently developed techniques from the
computer vision and computer graphics community for reconstructing broken archaeological artifacts12–14 for
application to reconstructing highly fragmented bone fractures. While some of these techniques are directly
applicable to bone reconstruction, there are many new challenges. We address the following two significant
challenges in this paper:

Noise— (CT data are less accurate than laser scan data and segmentation of the CT data amplifies noise in an
unpredictable manner)

Archaeological fragment reconstruction algorithms typically use laser scan data which provide surface mea-
surements with errors≤ 0.22mm in any direction15 or significantly better, e.g.,≤ 0.04mm for the ShapeGrab-
ber scanner.16 The noise for these measurements is typically the same in anysingle direction, which makes them
well suited for algorithms that are optimal for sphericallysymmetric (isotropic) noise conditions.

Volumetric CT data from clinical applications typically have a resolutions of approximately0.2−0.5mm in
the plane of acquisition, and slightly larger(0.3−0.5mm) in the direction along which images are acquired.17 In
addition, CT scan data reflect an averaging of tissue densityover a finite slice volume/thickness, with associated
partial volume artifacts. Extracting surfaces from volumetric CT data involves solving a difficult segmentation
problem. As a result, surfaces segmented from CT data exhibit significantly more variability than is present
in laser scan data. Additionally, this noise is non-stationary, i.e., it may be substantially more pronounced in
difficult segmentation regions; further, the structure of this noise is dependent on biases present in the underlying
surface-extraction segmentation algorithm.

Fracture Generation Process — (Bones break differently than archaeological artifacts)

Since archaeological artifacts are typically not constructed of bone, and certainly not living bone tissue, the
generative fracture processes for ancient artifacts and bone tissue are somewhat different. Archaeological frag-
ments typically consist of a hard brittle material such as stone, ceramic, or glass. In these cases fracture-surfaces
may often, but not always, be extracted by locating ridges and discontinuities on the fragment surface.The
extracted fracture surfaces are then assumed to correspondto a single fracture surface from another fragment..
Note that this assumes that segmented fracture surfaces have a 1-to-1 correspondence, i.e.,a fracture surface
extracted from a given fragment is assumed to match with one and only one other fracture surface from some
other fragment.



In contrast, living bone tends to splinter when subjected tohigh-energy trauma, generating pieces that not
uncommonly have a single, smoothly varying fracture surface that may correspond to one, two or more frag-
ments. For the studied tibial pilon fractures, we found thatthe proximal end of the remaining intact portion of
the tibia (ourbase fragment) typically presented the largest fracture surface. Many other fragments share smooth
surface regions that, when reconstructed, match with both the large tibial base fragment and with other smaller
fragments (see Figure 1).

As a direct consequence of these differences in fracture behavior, the fracture surface correspondence as-
sumptions for archaeological artifacts can bemuchmore restrictive than those for bone reconstruction. Specif-
ically, the bone reconstruction algorithm must allow for fracture-surfaces that are not 1-to-1, i.e., typical bone
fragments may have multiple fracture-surfaces, and each fracture-surface maypartially matchwith some other
partial fracture-surface from another bone fragment. In some cases, there are fracture-surface regions that do not
strictly have a compatible match. This may occur when segmentation variability leads to open gaps or interpen-
etrating surfaces when the fragment surfaces are properly aligned elsewhere. This makes the surface matching
stage for bone reconstruction much more difficult than reconstruction of archaeological objects and precludes
application of 1-to-1 surface matching techniques such as those proposed by Huanget al.14

2. METHODS

The system is divided into four parts:

1. Segment the volumetric CT data,17 with an emphasis on generating discrete closed surfaces, i.e., fragment
surfaces that may later be aligned (see §2.1).

2. Generate a surface mesh for each segmented bone fragment,and map each point on the surface mesh to a
Hounsfield intensity (for the 3D surface pointxi this map is referred to asf(xi) ) from the 3D CT scan
volumeI(x, y, z) using a 3Dmax() filter centered about the voxel containing back-projectionof each 3D
fragment surface point into the CT scan volume (see §2.2).

3. Segment fragment surfaces into intact- and fracture-surfaces using intensities from step 2 (see §2.3).

4. Coarsely identify matching patches over contiguous fracture-surface regions, utilizing an interactive user
interface. Optimize the specified fragment alignments to reconstruct the original bone from the bone
fragments, using the interactively specified regions (see §2.4).

2.1. CT Data Segmentation

CT studies were obtained from twenty-two tibial pilon fracture cases, with axial in-plane resolutions ranging
from 0.2 to 0.5 mm and slice spacing of 0.3 or 0.5 mm. This research was carried out with Institutional Review
Board approval, and informed consent was obtained from all subjects. Fracture fragment boundaries were
identified slice-by-slice from CT datasets using validateddigital image analyses.17, 18 A full 3D segmentation
was completed in five of the cases using purpose-written codein MATLAB (The MathWorks, Inc., Natick, MA).

Bone surface segmentations within each slice provide noisyestimates of true surface geometries. The seg-
mentation algorithm applied is not linear, which complicates the relation between the known (or possibly esti-
mated) noise distributions present in the measured CT (Hounsfield) intensities and the noise present in the spatial
positions of the segmented surface locations. Hence,(x, y) positions from the segmented CT slices are seen as
noisy estimates of the true surface geometry, where each point has a unique unknown noise distribution.



(a) (b)

Figure 2. These two CT slices from a comminuted fracture of the distal tibia typify the challenges in estimating the location
of bone fragment fracture-surfaces. The intersection of a segmented bone surface with the image slice is depicted in green
for each image. Figure (a) depicts a situation where the apparent bone interior has higher intensity than that of the cortex,
owing to the proximity to the subchondral bone underlying the ankle articular surface. Figure (b) depicts a situation where
the estimated surface segmentation lies away from the true location of the cortical surface.

2.2. Using CT Intensities to Detect Fracture Surfaces

In this section, we present our techniques for identifying the subset of segmented surface points that correspond
to fracture surfaces, i.e., surface regions generated whenbone fragments have broken apart. To do so, for each
3D surface pointxi = (x, y, z)t we estimate a Hounsfield intensity denotedf(xi) from the segmented bone
surfaces. Since cortical bone tissue density differs significantly from cancellous bone tissue, the Hounsfield
intensity at a surface location aids in delineating intact-surface from fracture-surface. In this step we take
advantage of the fact that the vast majority of fracture surface in the metaphyseal region (near the joint surface)
is from lower density bone. For both estimation and classification of the surface-point intensities we adopt a
rationale which attempts to minimize the probability of mis-classifying an intact-surface (cortical bone) point as
a fracture-surface (cancellous bone) point, i.e., we choose a thresholdτ to minimize type I errors in making the
classification.

(a) (b)

Figure 3. (a) High intensity circular regions depict thick cortical bone tissue from the proximal midshaft of the tibia. (b)
More distally, there is much less contrast between corticaland cancellous bone tissue regions. This change in the contrast
between cortical and cancellous tissue presents challenges in bone fragment segmentation and accurate fracture-surface
point classification.



0 50 100 150 200 250 300
200

205

210

215

220

225

230

235

240

245

250

255

in
te

ns
ity

 (
0−

25
5)

slice index

Figure 4. A boxplot of cortical tissue Hounsfield intensity as a function of slice index. Slice 0 denotes a slice from the
bone mid-shaft and slice 260 denotes the last slice from the distal tibia that contains bone fragment voxels. Note that the
variance of cortical tissue voxel intensities increases, and their median intensity value decreases, especially around slice
230 which is an area of difficulty for segmentation.

Typical long bones (such as the tibia and femur in the leg) consist of cortical bone tissue at the outer surface
and cancellous bone tissue in the bone interior. Cortical bone tissue is very dense, typically having CT intensities
I(x, y, z) ∈ [900−1800] Hounsfield units. For the long bones of the lower extremity, as studied in this paper, this
tissue is thickest along the bone mid-shaft and becomes verythin in metaphyseal regions near the articular joints.
Cancellous tissue has varying density, typically having CTintensitiesI(x, y, z) ∈ [500−1200] Hounsfield units.
These bone density relationships are further complicated in the immediate vicinity of the articular joints (termed
subchondral bone regions) where the specific functional demands produce a somewhat different bone structure
at the macroscopic level.

As cancellous bone tissue typically has a substantially lower Hounsfield intensity than cortical bone tis-
sue, and is found exclusively within the bone interior, we exploit the Hounsfield intensities in the vicinity of
segmented surface points to distinguish between intact-surface points and fracture-surface points. This is a typ-
ical two-class problem to which there are well-known solutions.19 Yet, there are two difficulties which make
identification of fracture-surfaces on segmented bone surfaces a non-trivial problem:

1. Estimated surface locations from the surface segmentation may lie away from the true location of the
cortical bone surface as shown in Figure 2.

2. Cortical bone tissue becomes very thin and less dense in distal and proximal regions of bones. Figure 3
shows CT slices that exhibit this behavior and Figure 4 provides a statistical analysis of this behavior as
a function of location along the limb-bone shaft, starting at the mid-shaft (slice index 0) and extending to
the fragments of the distal tibia (slice index 230).

These problems were addressed by estimating bone surface intensities and classifying them to minimize
the possibility of mis-labeling an intact-surface point asa fracture-surface point. First, we address problem
(1) by applying a standard 9x9x9max() filter as defined in standard image processing texts.20 This provides a



conservatively-high estimate of the Hounsfield intensity at each surface point and assumes a maximum deviation
of up to 4 pixels between the computed surface segmentation and the true bone surface. Second, we address
problem (2) by minimizing the probability of mis-classifying an intact-surface point as a fracture-surface point,
i.e., we choose a thresholdτ to minimize type I errors.

2.3. Fragment Surface Segmentation

To solve the binary classification problem, a mixture model consisting of two Gaussian probability distributions
is fit to the histogram of estimated fragment surface intensities (see Figure 5(a)). As mentioned previously, a
thresholdτ is selected to minimize type I errors for classification of the intact-surface intensities and subse-
quently applied for intact-surface / fracture-surface segmentation (see Figure 5(b)). The fracture surface is then
the largestcontiguousregion of fracture-surface points resulting from the classification step (see Figure 5(c)).
Note that two surface pointsxi andxj are members of a single contiguous fracture-surface regionif there exists
a path along edges of the surface mesh which connectsxi andxj and only traverses points considered to be
fracture-surface points.

2.4. Surface Alignment

For lack of a reliable 1-to-1 fracture surface classifier, werely on minimal, yet necessary, user interaction. Here a
user coarsely subdivides segmented fracture-surface regions into pairs of surfaces that are likely to, but need not
exactly correspond. Using these fracture-surface pairs, amulti-body alignment scheme following that of Pulli8

is applied, which uses a modified metric for the Iterative Closest Point (ICP)21 fracture-surface alignment step.
Our modification consists of two terms: (1) a point-to-planeEuclidean distance metric10 and (2) an intensity
matching metric.7, 9

We align points on one surface to the other surface by minimizing the distance between the points on one
surface to the plane defined by the nearest point and its associated normal on the other surface. For each point-to-
plane distance being matched (and summed) there is a weighting coefficient as defined by the joint-likelihoods
described below. This helps matched surfaces to join smoothly by emphasizing good matches at the perimeter.

e = min
R,t

∑

(i,j) pairs

p(f(xi)|ωo)p(f(yj)|ωo) ‖xi − projni
(Ryj + t)‖2

WhereR is an unknown 3x3 rotation matrix,t is a 3x1 translation vector,projni
(v) is the projection of

vectorv into the plane defined by the pointxi and its associated surface normalni andp(f(xi)|ωo)p(f(yj)|ωo)
is the joint-likelihood that the point pair(xi,yj) come from bone tissue close to the outer surface, i.e., the
probability that the intensity observed at pointxi, f(xi), comes from the cortical tissue class denoted here as
classω0.

This fusion of matching surface geometry and Hounsfield intensities is more robust than using geometry
alone, as it takes into account the fact that surface estimates, i.e., segmentation results, tend to be more accurate in
regions of high contrast in the CT data. In the case of comminuted bone fragment segmentation, the background
consists mainly of soft tissue which has a low CT intensityI(x, y, z) ∈ [0 − 600] Hounsfield units. Since
cortical bone tissue regions have good contrast with respect to the soft tissue background, estimates of the shape
and location of such regions are more accurate than the similar estimates of cancellous tissue regions. The term
p(f(xi)|ωo)p(f(yj)|ωo) takes this into account by providing a weighting coefficientfor each matched geometric
point pair. The weighting is the product of the probability that each of the points within the matched point pair
(xi,yj) comes from cortical tissue. This probability may be computed using the estimated distribution for the
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Figure 5. Segmenting fragment surfaces: (a) the normalized distribution of estimated Hounsfield intensities for the bone
fragment surface points shown in (b,c). The distribution isseen as a mixture of two Gaussians and the fit Gaussians are
plotted for cancellous tissue (shown in red) and cortical tissue (shown in green). A conservative thresholdτ = 0.85 is
chosen to minimize the probability of mis-classifying intact-surface points as coming from a fracture surface. (b) The
resulting segmentation, where points classified as belonging to the intact-surface are shown as blue and fracture-surface
points are shown as red. (c) The estimated fracture surfaces, i.e., the largest contiguous region of fracture-surface points
on each fragment, are shown here. (d) An aligned reconstruction of the fragments demonstrates the excellent quality of the
reconstruction – each fragment is colored differently (see§3 for details).

intensities of cortical surface points computed in §2.3 andshown as the rightmost curve in Figure 5(a). Since
the intensity assumed by each surface point is considered tobe independent and identically distributed with
the estimated distribution from §2.3, the productp(f(xi)|ωo)p(f(yj)|ωo) is equivalent top(f(xj), f(yj)|ωo),
which is the joint-likelihood that the intensities estimated for the point pair(xi,yj) are from cortical bone tissue,
referred to as the classω0. This coefficient is larger for matched point pairs with highHounsfield intensities than
those with lower Hounsfield intensities, which makes fragment alignments more sensitive to matched surface
point pairs with high Hounsfield intensities.

3. RESULTS

Figure 6(a) shows an iso-surface representation of a tibialpilon fracture test case. The nature of the bone
fragmentation results in the CT iso-surface being unable todiscriminate between different bones, let alone
between bone fragments. Using the segmentation algorithm from §2.1, eighteen bone fragments were identified
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Figure 6. An overview of the fracture fragment identification and reconstruction system: (a) an iso-surface of a fractured
tibia, (b) segmentation of the CT scan data generates discrete closed fragment surfaces shown in different colors (c)
fragment surface points are then divided into intact-surface points (green) and fracture-surface points (blue) (d) fracture
surfaces are subdivided interactively, here, black and blue regions denote sub-regions of various fragment’s fracture-surface
(e-f) two views of automatically aligned fracture-surfacesub-regions using a multi-body surface alignment algorithm.

within the CT scan (Figure 6(b)). In this case there were 7 fragments with sufficient volume (size) to be deemed
of clinical importance. Assembly of these 7 fragments took approximately 5 minutes of user interaction (Figure
6(c) and (d)), and just a few seconds of reconstruction alignment processing time (Figure 6(e) and (f)). The
reconstruction obtained is excellent, as readily judged byits visual appearance.

4. CONTRIBUTION

While intra-operative navigation tools exist to aid in reconstruction of long-bone fractures,11 these systems are
restricted to simple two-fragment fractures. The presented system represents the only example (to the authors’
knowledge) of a system for computer-assisted 3D reconstruction of highly fragmented bone fractures. The
system also represents a novel integration of bone fragmentsurface segmentation from CT data, bone fragment
surface segmentation from Hounsfield intensities, and 3D surface registration techniques. Modifications were
made to accommodate interactively solving the 1-to-1 correspondence problem for sub-regions of fragment



fracture surfaces. Common-practice multi-view registration techniques were fused with a new probabilistically
inspired alignment error metric for reconstruction.

5. CONCLUSIONS

We have described a novel system for the semi-automatic reconstruction of highly fragmented bone fractures.
The system represents the first fully-3D interactive reconstruction system available and is a logical extension of
a system developed to reconstruct archaeological objects from their fragments. The system addresses difficult
challenges related to the accuracy of segmented surface points and the fact that a single fracture surface on a
fragment may correspond to many other fragments. The resulting system allows for a semi-automatic recon-
struction of the bone fragments that is critical for providing good prognosis for these cases that are particularly
difficult to reconstruct.

This work was supported by grants from the NIH (AR046601 and AR048939) and the AO Foundation,
Switzerland.
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