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Abstract

This paper presents a novel method to segment bone fragments imaged using
3D Computed Tomography (CT). Existing image segmentation solutions of-
ten lack accuracy when segmenting internal trabecular and cancellous bone
tissues from adjacent soft tissues having similar appearance and often merge
regions associated with distinct fragments. These issues create problems in
downstream visualization and pre-operative planning applications and im-
pedes the development of advanced image-based analysis methods such as
virtual fracture reconstruction. The proposed segmentation algorithm uses
a probability-based variation of the watershed transform, referred to as the
Probabilistic Watershed Transform (PWT). The PWT uses a set of probabil-
ity distributions, one for each bone fragment, that model the likelihood that
a given pixel is a measurement from one of the bone fragments. The likeli-
hood distributions proposed improve upon known shortcomings in competing
segmentation methods for bone fragments within CT images. A quantita-
tive evaluation of the bone segmentation results are provided that compare
our segmentation results with several leading competing methods as well as
human-generated segmentations.
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1. Introduction

The images generated by contemporary 3D Computerized Tomography
(CT) scans are essential tools for providing diagnostic medical informa-
tion. The segmentation task seeks to divide these images into semantically-
meaningful regions. Segmenting images manually is a very time consuming,
tedious, and subjective process because of the huge amount of data and varia-
tions in expert’s opinions Fornaro et al. (2010). Computational segmentation
algorithms seek to address these issues by performing this task automatically.
Bone fragment segmentation is achieved by either identifying all pixels that
belong to the bone fragment or locating the pixels that form the fragment
surface boundary. Bone fragment segmentation is an essential process in the
medical field as it allows users to visualize and analyze bone fracture struc-
tures which may be difficult to observe from images alone. This facilitates
improvements to fracture diagnosis and treatment planning.

Bone fragment segmentation is a challenging problem. Bone fragmen-
tation creates distinct bone fragments whose boundary typically consists of
both cortical and cancellous tissues. This context requires a new model for
accurate bone fragment segmentation. Further, the scaffold-like structure of
cancellous tissue exhibits significantly lower CT intensities than the cortical
tissues. In regions where the scaffold includes large voids, e.g., the meta-
physis/epiphysis, these intensities often overlap with those of neighboring
anatomical structures such as muscle, tendons and fat.

While many algorithms have been developed for bone segmentation as in
Arabi and Zaidi (2017); Chu et al. (2015); Perez-Carrasco et al. (2015); Wu
et al. (2014); Paulano et al. (2014); Schmid et al. (2011); Swierczynski et al.
(2017); Brahim et al. (2017), very few of them include models appropriate for
the challenges associated with segmenting bone fragments. Most approaches
have the goal of segmenting intact bones from CT imagery and not bone
fragments which pose unique challenges.

The proposed work is an example of an automatic algorithm to segment
bone fragments within CT images of traumatic bone fractures, i.e., fractures
which separate a bone into multiple fragments (3 or more). This paper ad-
dresses two of the key challenges associated with bone fragment segmentation
(1) segmenting internal trabecular and cancellous bone tissues from adjacent
soft tissues having similar appearance and (2) separating bone fragments
that touch. The proposed approach formulates new probabilstic models to
improve state-of-the-art for segmenting bone fragments from fracture CT
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Figure 1: (a) shows slices from a 3D CT image of an intact ankle joint. (b)
shows the segmented tibia, fibula, and talus bone surfaces. (c) shows slices
from a 3D CT image of a fractured ankle. (d) shows the segmented bone
fragments surfaces. The segmentation from the 3D CT image was performed
using the proposed segmentation algorithm.

data. Segmentation proceeds by incrementally classifying pixels from image
regions of high-likelihood to regions of lower likelihood. The segmentation
algorithm applies a probability-based version of the watershed algorithm to
expand regions along constant contours of probability/likelihood. This ver-
sion of the watershed algorithm is referred to as the Probabilistic Watershed
Transform (PWT). The majority of pixels are classified using a pixel-to-
fragment class-conditional likelihood function which considers unclassified
pixels spatial proximity and intensity similarity to candidate fragments. A
second “isthmus” class-conditional likelihood function serves to segment a
small subset of the image data where island-like (hence “isthmus”) portions
of trabecular bone tissue is found far from candidate bone fragments. A
third probability function serves to switch between the pixel-to-fragment and
“isthmus” classification models. Figure (1) shows two 3D segmentations of an
ankle joint and a fractured ankle joint using the proposed algorithm. This
work extends preliminary work from Shadid and Willis (2013) which pro-
posed the approach for 2D image data. This paper describes new likelihood
models and presents new results for 3D image data.

This paper is organized as follows: Section 2 reviews state-of-the-art in
computer based bone fracture analysis systems and medical image segmen-
tation algorithms. Section 3 describes the bone fragment segmentation al-
gorithm used to segment fragments within a 3D CT image of a fractured
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limb. Section 4 provides segmentation results for clinical fracture cases and
quantitatively compares these results with several competing methods and
with human-generated segmentations. Section 5 concludes the paper with a
summary of the work and its impact on the current state of the research in
this field.

2. Related Work

A need for accurate bone segmentation from CT imagery has made this
general topic a long-standing research interest for several decades. As men-
tioned earlier, most approaches have the goal of segmenting intact bones
from CT imagery and not bone fragments which pose unique challenges. Li
et.al. in Li et al. (2015) proposed a fully automated intact cortical bone
segmentation algorithm for in vivo MD-CT imaging of human distal tibia.
The algorithm uses digital topologic and geometric techniques to perform
bone filling, alignment, region computation, and cortical bone segmentation.
Valentinitsch et. al. in Valentinitsch et al. (2012) proposed an automated
threshold independent technique to segment intact cortical and trabecular
bone in High Resolution peripheral Quantitative CT (HR-pQCT) images.
The algorithm uses local texture features to train a random forest classifier
to distinguish between cortex pixels and trabecular ones. Burghardt et. al.
in Burghardt et al. (2007) introduced an an adaptive local thresholding ap-
proach using a hysteresis algorithm on a gradient map. This approach is
applied to segment intact trabecular bone in HR-pQCT images. Chen et. al.
in Chen et al. (2017) developed a diffusion algorithm that depends on com-
puting the bone morrow contrast and the spatial variation in the background
marrow intensity. The algorithm was applied to segment intact trabecular
bone in vivo CT images. These algorithms have been developed to segment
intact bones within high quality CT images.

These approaches have significantly advanced the state-of-the-art for ac-
curately labeling bone tissue in CT. Yet, these methods often produce inac-
curate results when applied to segment bone fragments generated by a long
bone fracture. This can be explained by the fact that these algorithms make
the “envelope assumption”. This assumption is motivated by the fact that
intact bones consist of a dense outer shell of cortical bone tissue which acts
as an envelope for the less-dense cancellous bone tissue (also known as tra-
becular or spongy bone tissue) inside, see figure (2). Segmentation methods
for intact, i.e., non-fractured bones using the envelope assumption target de-
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Figure 2: Shows the typical anatomy of intact bone tissue where dense corti-
cal tissues surround less-dense cancellous tissue. Image created by Pbroks13
02:26, 27 November 2008 (UTC)

tection of the high-intensity cortical tissues that form the outer envelope of
the bone tissue. The less-distinctive cancellous bone tissue regions internal
to the bone at the bone ends can be classified, if necessary, as it is enclosed
inside this envelope. The envelop assumption greatly simplifies bone segmen-
tation as it allows the surface of bones to be detected and it also facilitates
separation of adjacent bones at joint locations. When the outer envelope of
cortical tissue is disrupted, as is the case in a bone fracture, the envelope
assumption is no longer valid which creates problems for these approaches
which manifest as inaccuracies in the bone fragment shapes and merging of
adjacent bone fragments into a single bone tissue region. This problem likely
to appear at close proximity areas where small parts of different bone frag-
ments with small depth appear touching each other in a CT image, see figure
(3).

Our approach adopts a model for bone tissue applicable for segmentation
of both intact and fractured bone tissues albeit the most significant contribu-
tion of this approach is for segmenting fractured bone tissues. Specifically, we
extend a technique originally proposed by Grau et. al. in Grau et al. (2004)
which proposes integrating probability theory with the classical watershed
transform segmentation algorithm. In their paper, the authors demonstrate
that difficult medical image segmentation problems may be solved using this
approach while avoiding many of the pitfalls typically associated with water-
shed transform with specific examples that include segmentation of a knee
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Figure 3: An example of an “isthmus” of bone area. (a) A CT image of a
fractured bone. (b) An image of the estimated bone region. Circled area
shows a location for an “isthmus” of bone area where two bone fragments
are touching. An ”isthmus” area has a small width compared to other bone
region areas.

joint MRI into cartilage, bone, and other tissues and segmentation of a brain
MRI into cerebral spinal fluid, white matter, and grey matter.

In Grau et al. (2004), a very conservative classifier is used to assign la-
bels to those pixels in the image whose object class can be estimated with
very high confidence. These pixels are used as region seeds for each object
class which are expanded, using the watershed transform algorithm, along
constant (discrete) contours of probability using the posterior probability of
the object class. The posterior probability is computed via Bayes rule. This
rule takes the posterior probability of the class, k, given the data, D, as the
product of a prior distribution on the class k denoted P (k) and a conditional
likelihood function P (D|k) normalized by the probability of observations,
P (D). P (D) is typically written as a marginalized joint distribution, e.g.,
P (D) =

∑
k P (D|k)P (k), which incorporates the prior distribution and like-

lihood functions for all classes. In Grau et al. (2004), authors define two
prior distributions: (1) a spatial prior that encourages neighboring voxels to
share the same label, and (2) an intensity prior for each pixel in the image
obtained by registering an image atlas to the recorded image. Their re-
sults demonstrate that application of prior information in this way can both
address the shortcomings found in prior implementations of the watershed
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transform for segmentation and compute highly accurate solutions to very
difficult segmentation problems. However, there has been little work to date
to extend this framework to other MRI segmentation problems or to other
medical imaging modalities. The main impediments to broadening the ap-
plication of this framework is determining the appropriate prior models to
apply. For bone fragment segmentation problem, the prior information is not
available due to the large variation and randomnicity in fragments charac-
teristics such as shape, position, orientation, and texture. So, the improved
watershed algorithm dependency on prior information is not desirable.

3. Methodology: Bone Fragment Segmentation Using the PWT
Algorithm

The bone fragment segmentation algorithm uses the PWT algorithm to
extract bone fragment regions from a CT image. The proposed algorithm
seeks to address two issues: (1) how to accurately segment bone fragments
that touch, i.e., are in close proximity to one another, and (2) how to accu-
rately segment bone fragment tissue from other tissues. It does this by de-
veloping probabilistic models for both situations and then integrating these
models into a single probabilistically-driven version of the classical watershed
transform, referred to as the PWT.

The bone fragment segmentation algorithm takes as input a CT image
of the limb (I) and a set of user settings. The output of this algorithm
is a labeled image where each unique label corresponds to a unique bone
fragment. The algorithm consists of three steps:

1. Classify the input image pixels into three sets: non-bone, cortical bone,
and non-cortical bone,

2. Compute probability distributions,
3. Perform the PWT algorithm.

These steps are shown in figure (4). By performing these steps, an estimate
of bone fragment regions in a CT image is obtained. This algorithm processes
the entire image at once for both 2D image and volumetric 3D ones.

Two user settings specify the parametric information needed to run the
bone fragment segmentation algorithm. This unknown information include:
(1) the maximum size in pixels of false positive markers, referred to as size
threshold ,Tsize, and (2) the maximum background-to-bone pixel distance
which is used to mark pixels considered to be in narrow “isthmus” in regions.
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Figure 4: Shows the three steps to perform the bone fragment segmentation
algorithm: (1) Classify the input image pixels into three sets: markers, data,
and background, (2) Compute class-conditional probabilistic reliefs, and (3)
Compute watershed to expand the image markers in the order of slowest cost
ascent until all non-markers pixels belong to some marker.
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Figure 5: (a-c) show how a pair of prior distributions are used to estimate
the bone tissue pixels in a CT image. (a) shows an example for a CT image
segmented into bone tissue, denoted B, and non-bone tissue, denoted N, are
manually segmented. (b) shows the histogram of pixel intensities for the
segmented bone and non-bone areas. (c) shows the pair of Gaussian prior
distributions for bone, and non-bone tissues

3.1. Image Pixel Classification
Pixel classification is the first step in bone fragment segmentation algo-

rithm. This step takes three inputs: (1) the CT image I, and (3) the size
threshold Tsize. The outputs of this step are: (1) a collection of pixel regions
called markers, M, (2) a set of non-cortical bone tissue pixels, D, and (3) a set
of background pixels, BG. This is accomplished via a two-stage classification
process. Stage 1 classifies the image pixels as bone tissue or non-bone (back-
ground) tissue. Stage 2 sub-divides the bone tissue into cortical bone tissue
and non-cortical bone tissue. The three tissue classes are computed using two
intensity threshold values: (1) cortex, Tcortex, and (2) bone, Tbone. Threshold
values are estimated using a prior distribution for bone tissue, p(wbone), in
CT images, where wbone denotes the class for the bone region. Figure (5)
shows the generated prior distribution as a function of CT intensity for bone
tissue within the human body as well as a prior distribution for non-bone
tissue. The prior distributions are approximated by two Gaussian functions,
one for bone tissue and the second non-bone tissue. Image data shown in
the results section, were segmented with priors having means of the bone tis-
sue and non-bone tissue distributions were 692 and -212, respectively. The
CT values in the image are represented by 12-bit numbers range from -2048
to 2047. These findings are consistent with CT values reported for human

9



bone and soft tissues as reported in Feeman (2009). Automated algorithms
other than global threshold to estimate the three regions, i.e., non-bone re-
gion, non-cortical bone region and cortical bone region, are reported in Aslan
et al. (2009); Janc et al. (2011). Adjustments to this approach may be re-
quired with distinct imaging machinery due to intensity and scale variations
that can exist for different CT imaging manufacturers.

The first classification stage applies a global threshold, Tbone, to classify
image pixels into bone pixels or background pixels. Bone pixels are those
pixels having intensity greater than or equal to the bone threshold, i.e.,
Xbone = {x|I(x) ≥ Tbone} where I(x) is the image intensity for pixel at loca-
tion x. all other pixels are classified as background pixels, i.e., BG = Xbone.

The bone threshold Tbone value is specified by finding the intersection
point between bone prior and non-bone prior distribution. In order to mini-
mize Type 2, i.e., reduce false non-bone tissue pixels classification, p(wbone)
is multiplied by a constant that is > 1 to shift the threshold to lower proba-
bilities of p(wbone). For the results shown, this constant was set to 100 which
is the bone threshold, i.e., Tbone= 180. Users may change the constant values
as appropriate to fit the imaging devices used in their application, e.g., using
the standardized range for Hounsfield units that the cortex and cancellous
tissues occupy.

The second classification stage applies a global threshold, Tcortex, to clas-
sify bone pixels Xbone into cortical bone pixels or non-cortical bone pixels.
Cortical bone pixels are those pixels having an intensity greater than or
equal to the cortical bone threshold , i.e., Xcortex = {x|I(x) ≥ Tcortex,x ∈
Xbone}. all other bone pixels are classified as non-cortical bone pixels, i.e.,
D = Xbone ∩Xcortex.

The cortical bone threshold Tcortex is determined using the prior distri-
bution for bone tissue, p(wbone). The value of Tcortex is specified by finding
the other intersection point between bone prior and non-bone prior distribu-
tions, which is to the right of the bone prior distribution’s center. In order to
minimize Type 1, p(wbone) is multiplied by a constant that is < 1 to shift the
threshold to higher probabilities of p(wbone). In this work, the constant is set
to 0.05 so that the intersection point is approximated to 600HU which is the
cortical bone threshold, i.e., Tcortex= 600. Users may change the constant
value as appropriate to fit the imaging devices used in their application.

The set of cortex pixels Xcortex is decomposed into a disjoint union of
marker regions, i.e., Xcortex =

⋃
iMi, where Mi is the ith marker. Markers

are intended to be a coarse labeling of the final segmented image. Each
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marker will ultimately define a distinct PWT region having a unique label.
Hence, the number of provided markers is also the estimated number of bone
fragments in the image.

Markers having volume less than the user-specified minimum size, Tsize
are removed resulting in a collection of marker regions referred to as M, i.e.,
M = {Mi, |Mi| ≥ Tsize,Mi ∈ Xcortex} where |Mi| denotes the number of pix-
els inMi. This process filters out bone fragment detections due impulse noise
and detections corresponding to clinically irrelevant (small) bone fragments.
Pixels associated with removed markers are added to the set of non-cortical
bone pixels

3.2. Probability Distributions Computation
The second step of the bone fragment segmentation algorithm takes five

inputs: (1) the CT image I, (2) the set of markers M, (3) the set of bone
pixels D, (4) the set of background pixels BG, and (5) the maximum pixel-
to-background distance observed among all detected “isthmus” pixels dmax,
and provides as output K class-conditional likelihood functions; one for each
detected marker, where K is the number of detected markers. The likelihood
functions define the stochastic relationship between the each unclassified, i.e.,
non-marker, bone pixel and each of the markers. Let fk(x) denote the kth
likelihood function evaluated at pixel location x whose value is the likelihood
that the intensity I(x) is a measurement from the kth bone fragment, or
equivalently, that the pixel at x is from class wk.

Two pixel likelihoods are used to form the likelihood function fk(x): (1) a
pixel-to-fragment model and (2) an “isthmus” model. An “isthmus” indicator
function, 1isthmus(x), is used to select one of these two models at each image
location.

Pixel-to-Fragment Probabilities
Pixel-to-fragment probability computation class-conditional likelihood func-

tions model the likelihood of a pixel based on its spatial proximity and in-
tensity similarity to a candidate fragment.

The total likelihood is taken as the product of two likelihoods: 1) a
position-to-marker based likelihood and 2) intensity-to-maker likelihood. The
position-based and intensity-based likelihoods are assumed to be condition-
ally independent. The fragment probability distribution is computed in equa-
tion (1):

11



p(wk|I(x),x, k,M) =
p(wfragk |I(x), k,M) p(wfragk |x, k,M)

p(I(x),x,M)
(1)

where p(wk|I(x),x, k,M) is the posterior pixel-to-fragment probability for
pixel at location x to have come from the kth fragment/marker. It is com-
prised of the product of p(wk|I(x), k,M), the likelihood of observed intensity,
I(x),to come from the kth marker and p(wk|x, k,M) the likelihood of posi-
tion x to be a member of the kth marker. The normalization p(I(x),x,M) =∑

k p(wk|I(x),x, k,M) corresponds to the evidence term in typical Bayesian
classification and normalizes the product to be a well-defined probability dis-
tribution. In practice, posterior probabilities need only be computed for bone
pixels only, i.e., x ∈ D. The computation of probability distribution is based
on spatial and intensity information that are obtained from inside the image
to reduce heterogeneity. Intensity distribution inside the bone region may
vary significantly from one dataset to another depending on the parameters
of acquisition, the imaged body part, and the nature of the bone tissue for a
patient.

The position-to-marker likelihood, p(wk|x, k,M), is computed as the ratio
of the reciprocal of the closest distance between point x and the boundary
of marker Mk for the kth bone fragment to the sum of the reciprocals of the
individual closest distances between point x and all marker boundaries. The
computation of p(wk|x, k,M) is shown in equation (2).

p(wk|x, k,M) =

1
dist(x,Mk)

K∑
i=1

1
dist(x,Mi)

(2)

where dist(x,Mi) is the shortest 3D Euclidean distance between pixel x in
the image and the boundary marker region Mi; see figure (6) for a graphical
explanation and equation (3) for the mathematical definition

dist(x,M i) = min
∀xj∈Mi

{||x−xj||} (3)

where ‖·‖denotes the 3D Euclidean distance. The computation of the posi-
tion likelihood is based on the assumption that a bone pixel is most likely
part of the bone fragment region which has the closest cortical pixels to
that bone pixel. This assumption is based on the fact that bone structures
are continuous, smooth and covered by cortical tissue (the envelope assump-
tion). The position-based likelihood serves as a shape based probability for
each bone fragment class.
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Figure 6: An example of how to compute the position likelihood for pixel
x given the first marker and the set of markers M = {M1,M2,M3}.
p(x|”1”,M) is the ratio of the reciprocal of the distance between point x
and marker M1 to the sum of the reciprocals of the individual distances
between point x and all markers, refer to equation (2).

The intensity-to-marker likelihood, p(wk|I(x), k,M) is modeled via a
Laplace distribution as shown in equation (4).

p(wk|I(x), k,M) =
1

2
exp(−|I(x)− µk(x)|) (4)

where µk(x) is the location parameter of the Laplace distribution. The com-
putation of intensity likelihood is based on the assumption that bone struc-
tures typically exhibit an exponential decaying of intensity in CT images
from their cortex. µk(x) is computed using equation (5):

µk(x) =
1

|LS(d)|
∑

xi∈LS(d)

I(xi) (5)

where d is the closest 3D distance between pixel x and the boundary of the
kth markerMk, i.e., d = dist(x,Mk) and LS(d) is the set of unclassified bone
pixels that are equi-distant to their closest marker, i.e., those pixels that
satisfying dist(xi,M)− d = 0. LS(d) is computed as in equation (6).

LS(d) = {xi|dist(xi,M)− d = 0,∀xi ∈ D} (6)

The distance between a pixel xi and the set of markers M, i.e., dist(xi,M),
is calculated similarly to equation (3) but differs in that it considers all
unclassified bone pixels, xi, and markers as shown in equation (7):

dist(xi,M) = min
∀xj∈M

||xi−xj|| (7)
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Figure 7: An illustration picture to show the equal distance lines from mark-
ers. Along each line, pixels are assumed to have the same intensity value.

The computation of µk(x) is based on the assumption that the intensity val-
ues decay similarly a a function of distance from the marker boundary for all
fragment. Hence, unclassified bone pixels having identical pixel-to-fragment
distances are expected to have the same intensity value, see figure (7) . This
assumption is based on the fact that bones exhibit smooth structural changes
and will have similar trabecular structure as a function of distance from the
bone cortex.

The normalization factor, p(I(x),x,M), ensures that the likelihood prob-
ability in the left-hand side of equation (1) is a valid probability which sums
over all possible hypotheses to one. This normalization factor is computed
in equation (8):

p(I(x),x,M) =
K∑

k=1

p(wk|I(x), k,M) p(wk|x, k,M) (8)

where K is the number of markers.

Isthmus Probabilities
A second “isthmus” class-conditional likelihood function is purpose-built

to segment the difficult decision regions where island-like (hence “isthmus”)
groups of bone pixels are found distant from marker/cortex regions. These
pixels typically correspond to fractured trabecular tissue surrounded by mul-
tiple touching bone fragment regions. The isthmus likelihood serves to seg-
ment these pixels as a post-processing step a custom model are not classified
by the a fore-mentioned pixel-to-fragment likelihood.
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Given the high uncertainty of the label of these pixels, we impose a likeli-
hood on these pixels that is independent of the fragment regions and observed
intensity. Specifically, we assign these pixels the one-sided triangular distri-
bution based on their distance to the nearest background pixel as shown in
equation (9):

pisthmus(x|M, BG, dmax) =

{ 2
d2
max

(dmax − dist(x, BG)) for dist(x, BG) ≤ dmax

0 otherwise
(9)

This has the effect of assigning highest probabilities to the unclassified isth-
mus pixels farthest from the background and decreasing probabilities to those
isthmus pixels that lie closer to background (typically soft tissue) pixels. The
value dmax is the maximum pixel-to-background distance observed among all
detected “isthmus” pixels. Note that the pixel-to-background distance is de-
fined as the length of the shortest path that connects an “isthmus” bone
pixel to a background pixel such that this path does not include any marker
pixel. Computation of distances for pixels-to-background path is accom-
plished using the wavefront propagation algorithm described in Porikli and
Kocak (2007).

Combined Probabilities for PWT Computation
The pixel-to-fragment and isthmus probabilities are merged to generate

a set of probability distributions {fk} that represent the likelihood that the
measurement at position x is a member of the kthbone fragment (or equiva-
lently class wk).

An indicator function is used to mark those pixels lying at ”isthmus”
locations and is used to mathematically switch between pixel-to-fragment
and “isthmus” probabilities. Isthmus pixels are detected based on their pixel-
to-background distance as indicated in equation (10).

1isthmus(x) =

{
0, dist(x, BG) < dmax

1, otherwise
(10)

The indicator function has the impact of marking pixels that are either
(1) distant from a marker or (2) close to the background as candidate “isth-
mus” locations. These particularly challenging regions are assigned the lowest
likelihood function values. As such, they will be visited last using the PWT
algorithm which adopts a highest-likelihood-first region growing procedure.
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(a) (b)

Figure 8: Bone fragment segmentation result using the PWT algorithm, (a)
original image, (b) segmentation results, each unique label is represented
with a unique color. The white area represents the background points in
BG.

The PWT probability distributions are computed in equation (11):

fk(x) =

{
p(wk|I(x),x, k,M) + maxx pisthmus(x|M, BG, dmax) if 1isthmus(x) = 0

pisthmus(x|M, BG, dmax) if 1isthmus(x) = 1
(11)

where fk(x) is the likelihood function associated with marker Mk for pixel x.
The algorithm uses 1isthmus(x) to switch between pixel-to-fragment and “isth-
mus” probability models. Adding maxx pisthmus(x|M, BG) to the pixel-to-
fragment probability shifts the likelihood function values for all non-isthmus
pixels to ensure they are segmented prior to segmenting any “isthmus” pixels
in the PWT algorithm.

3.3. Performing the PWT Algorithm
Performing the PWT algorithm is the fourth step of the bone fragment

segmentation algorithm. This step takes four inputs: (1) the set of markers
M, (2) the set of bone pixels D, (3) the set of background pixels BG, and
(4) the set of probability distributions {fk}. The output of this step is a
collection of labels, one for each bone pixel. The collection of bone pixels
that share the same label form a unique segment which represents a unique
bone fragment in the image, see figure (8).

The PWT algorithm is performed as described in Shadid and Willis
(2013). The algorithm starts by assigning a unique label for each marker
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(a) (b)

Figure 9: (a,b) shows a segmentation result excluding (a) and including(b)
the use of “isthmus” probabilities. Note that inclusion of these probabilities
allows some parts of the fibula and talus segmentation to be corrected.

and label its pixels with the same label. Then, the labels of the markers
are expanded into bone pixels according to their probability distributions.
Pixels with higher probability values are processed before pixels with lower
probability values. Once the PWT algorithm finishes its operations, the col-
lection of the labeled pixels represent the estimated bone fragments in the
image and the background set BG contains the pixels that do not belong to
any bone fragment.

The PWT algorithm assigns labels to non-”isthmus” pixels before assign-
ing labels to ”isthmus” pixels because none ”isthmus” pixels have higher prob-
abilities. This order of assignment reduces the expansion of any incorrect
labels for pixels in the narrow bone areas to none ”isthmus” pixels. For
”isthmus” pixels, the PWT algorithm expands labels by adding an additional
layer of pixels neighboring those already labeled ones at each step, starting
from the farthest pixels from the boundary of the bone region since they
have higher probabilities, refer to equation (11). This order of assignment
causes ”isthmus” pixels to be divided evenly between neighboring segments.
Figure (9) shows an example of segmentation results with and without the
use of “isthmus” probabilities demonstrating their role for correctly labeling
difficult bone fragment pixels.
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4. Results

The bone fragment segmentation algorithm was quantitatively evaluated
to better understand the strengths and weaknesses of this algorithm. The
quantitative evaluation is performed over 2D images and 3D images. For 2D
images, the evaluation is performed by comparing results from a collection
of segmentation algorithms, including results from the proposed algorithm,
with results established as the ground truth. Analysis proceeds by studying
the geometric properties of the segmentation boundaries and regions for a
select group of interesting images. For 3D images, the experiment compares
segmentations for the PWT algorithm with the ground truth examples pro-
vided by the work in Liu (2012a). The ground truth examples are surfaces
for tibia fragments generated by triangulating segments that have been man-
ually generated by a human. The comparison process generates surfaces for
the segments generated by the PWT algorithm. Then, it computes the eval-
uation metric that measures the segmentation difference by comparing the
boundaries of the two surfaces using a boundary difference score.

The clinical data set includes six cases for tibia fractures where each case
includes an image of a broken limb and an image of an unbroken limb. These
fracture cases range from low energy fracture events such as 1.5 foot fall,
to high energy fracture events such as a 50 mph car accident. The images
are 3D CT scans in DICOM format and 16-bit are used to express the CT
numbers. Each volume contains of 81 to 302 contiguous axial slices with
a slice thickness of 5mm. 2D images are generated by selecting slices from
the 3D scans from axial, sagittal, and coronal view perspectives to represent
normal and abnormal cases of intact and fractured shapes of bone fragments.

The proposed segmentation algorithm evaluation approach requires a def-
inition of a ground truth segmentation for each image. The ground truth
segmentation is generated by employing a human to manually segment each
image. The set of human generated segmentations were taken as a collection
of “ground truth” examples. The segmentation algorithm is then quanti-
tatively evaluated by comparing its result with the ground truth examples.
The evaluation approach uses region based metrics and a boundary based one
to know how well the segmentation algorithm performs. The region based
metrics include: 1) accuracy, 2) sensitivity, 3) specificity, 4) overlap, 5) preci-
sion, 6) recall, 7) F1 score, 8) Hamming distance, and 9) Region Rank (RR).
While the used boundary based metric is Cut Discrepancy (CD). These met-
rics are taken from Barrett and Swindell (1996); Powers (2007); Mookiah
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et al. (2013); Chen et al. (2009); Shadid and Willis (2013). The performance
of the PWT segmentation algorithm is compared with several algorithms
used for bone segmentation to show how well it performs with respect to
them.

4.1. Evaluation Results and Discussion
A comparative evaluations experiment was conducted to evaluate the

performance of the bone fragment segmentation algorithm on 2D images
and 3D images. For 2D images, The evaluation compares the bone frag-
ment segmentation algorithm using the PWT algorithm, referred to as the
PWT algorithm for abbreviation, with the most competing segmentation al-
gorithms found in Shadid and Willis (2013): Threshold, Otsu (1979), and
Watershed, Meyer (1991). The threshold technique is implemented using
Otsu’s algorithm in MATLAB. It takes as input a 2D image and provides
as output closed contours for the segmented regions where each enclosed re-
gion represents a unique segment. The dark background region in the input
image is excluded from the threshold calculations to avoid segmenting the
whole limb. The watershed technique is implemented using Meyer’s algo-
rithm in MATLAB. It takes as input a 2D image that is a modified version
of the CT one such that it includes the estimated bone region and has min-
ima at the estimated cortical regions, only . These cortical and bone regions
are the same ones used in the PWT algorithm. Level set and active contour
techniques are ignored in this comparison, because they are more suitable for
segmenting one target component object, e.g., intact bone, than several bone
segments as indicated in Shadid and Willis (2013). The variation of intensity
in texture areas generates strong internal forces within bone regions that af-
fect deformable models. These internal forces move the initial contours for
deformable models toward regions boundaries making a deformation process
to split internal structures and textures of bone regions.

Figure (10), shows image segmentation result for a 2D CT image of a
fractured bone using seven different image segmentation methods. This fig-
ure is presented to allow for visual comparison of the results and to bet-
ter understand the strengths and weaknesses of the PWT algorithm. The
PWT settings that are used to segment the image are: Tsize = 15 pixel, and
dmax = 15 pixel. The result suggests that the PWT algorithm can generate
similar segmentation results to the ground truth examples.

The segmentation algorithms used in the test generated different results
when they applied on CT images of a fractured bone. The proposed algo-
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(a) (b)

(c) (d) (e)

Figure 10: Image segmentation results for a 2D CT sagittal slice image of
a fractured ankle with severity score 58 using four different segmentation
methods. (a) The input image. (b-e) The segmentation results generated by
the used segmentation methods: (b) humans (“ground truth”), (c) the PWT
algorithm, (d) the watershed algorithm , and (e) the threshold algorithm.
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(c) (d) (e)

Figure 11: Image segmentation results for a 2D CT coronal slice image a frac-
tured ankle with severity score 71 using four different segmentation methods.
(a) The input image. (b-e) The segmentation results generated by the used
segmentation methods: (b) humans (“ground truth”), (c) the PWT algo-
rithm, (d) the watershed algorithm , and (e) the threshold algorithm.

rithm was able to segment bone fragments. Also, it did not show a leak
problem through areas of close proximity. The watershed algorithm was able
to generate the correct number of fragments but it suffers a lot from the
leak problem. It did not stop at the boundaries of bone fragments and kept
growing segments specially through close proximity areas, e.g., fragment A2

is kept growing into regions of other fragments and not stopped at its bound-
aries. The thresholding algorithm was not able to separate bone fragments
in close proximity, e.g., fragments A2 and A3 are wrongly joined together. In
addition, it was not able to segment all cancellous tissue.

The compared segmentation algorithms are applied to other datasets of
fracture cases to generalize the result, for example see figures (11 and 12).
Figure (12) shows the importance of the fragment probability which depends
on the position and intensity information of the pixels. The PWT segmen-
tation result for fragments A2 and A4 are closer to the ground truth than
any other segmentation algorithm. That is because the separating pixels be-
tween these fragments have intensities lower than expected by the Laplace
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(c) (d) (e)

Figure 12: Image segmentation results for a 2D CT sagittal slice image of
a fractured ankle with severity score 74 using four different segmentation
methods. (a) The input image. (b-e) The segmentation results generated by
the used segmentation methods: (b) humans (“ground truth”), (c) the PWT
algorithm, (d) the watershed algorithm , and (e) the threshold algorithm.
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Figure 13: A chart for region based evaluation scores for segmentation results
of all 2D images. The x-axis represents the region based metrics for different
segmentation algorithms while the y-axis represents the measured metric
value.

distribution. So low probability values are generated for them in order to be
processed last by the PWT algorithm. The segmentation results of different
algorithms are quantitatively evaluated. Figure (13) shows a bar chart of
the evaluation scores for the six automatic segmentation methods when eval-
uated over all the images. There are seven unique region based evaluation
metrics that are reported: 1) accuracy, 2) sensitivity (recall), 3) specificity,
4) overlap, 5) precision, 6) F1 score, and 7) HD. Table (1) shows the mea-
sured seven region based metrics. The average of all region based metric
is computed to rank segmentation algorithms. This average is referred to
as a Region Rank metric (RR). The RR metric for segmentation algorithms
is reported separately in a table and a chart. Figure (14) shows a chart of
the RR metric while table (2) shows the RR metric for segmentation algo-
rithms. The PWT segmentation has the score closest to the score for the
ground truth examples among all the automatic segmentation algorithms.
This indicates that the regions computed by the PWT algorithm are close
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Method Accuracy Sensitivity Specificity Overlap Precision F1 HD

Threshold .75±.1 .75±.08 .78±.15 .62±.14 .73±.19 .72±.13 .85±.06

Watershed .77±.2 .74±.23 .86±.16 .62±.2 .77±.15 .72±.19 .80±.07

PWT .94±.04 .96±.03 .93±.05 .91±.06 .94±.04 .94±.04 .95±.03

Table 1: Region based evaluation scores for segmentation results of all 2D
images computed for the different segmentation algorithms used in perfor-
mance comparison. All metrics values range from 0 to 1. The smaller the
degree of mismatch, the closer the metric value to 1. The values are reported
using the following format: µ ± σ, where µ is the average score and σ is the
standard deviation.

Figure 14: A chart for RR evaluation score for segmentation results of all 2D
images to compare the performance of the different segmentation algorithms.
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Method Threshold Watershed PWT
RR 0.74±.12 0.75±.17 0.94±.04

Table 2: RR evaluation score for segmentation results of all 2D images com-
puted for the different segmentation algorithms used in performance com-
parison. The metric value ranges from 0 to 1. The smaller the degree of
mismatch, the closer the metric value to 1. The values are reported using
the following format: µ±σ, where µ is the average score and σ is the standard
deviation.

Method Threshold Watershed PWT
CD 0.13±.08 0.28±.12 0.03±.02

Table 3: CD evaluation score for segmentation results of all 2D images com-
puted for the different segmentation algorithms used in performance compar-
ison. Metric values range from 0 to 1, the smaller the degree of mismatch,
the closer the metric value to 0. The values are reported using the following
format: µ± σ, where µ is the average score and σ is the standard deviation.

to the regions specified in the ground truth segmentations. The boundary
based comparison metric CD for segmentation algorithms is reported in a
table and a chart. Figure (15) shows a chart of the CD metric while table
(3) shows the CD metric for segmentation algorithms. For this metric, the
PWT segmentation has the score closest to the score for the ground truth
examples among all the automatic segmentation algorithms. This indicates
that the shapes of the regions computed by the PWT algorithm are close to
the shapes of the regions specified in the ground truth segmentations. The
small value of the computed CD metric for the PWT algorithm indicates that
the PWT algorithm will not over-segment or under-segment most of models
in the dataset. Hence, all evaluation scores indicate that the PWT algorithm
tends to produce good segmentations when evaluated over all the 2D images
in the test dataset.

The PWT algorithm typically out-perform the analyzed competing seg-
mentation methods. This can be explained for three main reasons: 1) the use
of unmodified intensity information in the computation of pixel-to-fragment
probabilities, 2) the use of distance information between pixels and mark-
ers in the computation of pixel-to-fragment probabilities, and 3) the use of
”isthmus” probabilities to enhance the segmentation result in “isthmus” bone
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Figure 15: A chart for CD evaluation score for segmentation results of all 2D
images to compare the performance of the different segmentation algorithms.

regions. Figure (16) shows an example of how the use of ”isthmus” probabili-
ties reduces the leak problem in 2D and 3D. Figures (16 b and c) demonstrate
the improvement in segmentation results in 2D due to the use of ”isthmus”
probabilities. The leak may appear in small in 2D but when it continues
in 3D across other slices the problem grows up and cross multiple bone as
shown in figure (16 d). In figure (16 d) parts of the talus (purple) marked
as tibia (green) and some of them are located away from where the leak
started. Figure (16 e) demonstrates the capability of ”isthmus” probabilities
to enhance the segmentation result and reduce the leak problem.

The performance of the PWT bone fragment segmentation algorithm is
quantitatively evaluated on 3D CT images. The performance is evaluated
by applying the PWT algorithm on two 3D CT images of ankles to segment
the tibia: one image for an unbroken tibia and a second records a fractured
tibia after an injury. This evaluation is conducted on unbroken bone and a
fractured one to prove that the proposed algorithm is not limited to fractured
bones only. The estimated surfaces by the algorithm are compared to ground
truth surfaces provided by the work in Liu (2012b). The estimated surfaces
are extracted from the volume data using the marching cubes algorithm
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(a) (b) (c) (d) (e)

Figure 16: An example shows the enhancement benefit of ”isthmus” prob-
abilities in 2D and 3D images of left ankle. (a) is the input image. (b) is
the segmentation results using the pixel-to-fragment probabilities only. (c)
is the segmentation result using the combined pixel-to-fragment probabili-
ties and ”isthmus” probabilities. (d) The 3D segmentation results using the
pixel-to-fragment probabilities only. (e) The 3D segmentation result using
the pixel-to-fragment probabilities and ”isthmus” probabilities.

described in Hansen and Johnson (2005). The performance is measured
by computing the cut discrepancy metric which evaluates average distance
between the points of the estimated surfaces and their corresponding points
in the ground truth surfaces.

Figure (17) shows a segmentation result for a 3D CT image for unbroken
tibia using the PWT algorithm. The images show the segmentation result
of the PWT algorithm for the tibia bone (in red) together with its “ground
truth” segmentation (in pink) from three different view perspectives: axial,
coronal, and sagittal. They are shown together to allow for visual comparison
of the results and to better understand the strengths and weaknesses of the
PWT algorithm. The “ground truth” serves as the benchmark against which
the PWT segmentation is compared.

The segmentation result of the PWT algorithm indicates that one region
was generated to represent the unbroken tibia. The surface of this region
looks very similar to the ground truth one. The cut discrepancy metric
for the segmentation result is 0.05. This low value confirms the similarity
between the segmented region and the ground truth one.

Figures (18-21) show segmentation result for a 3D CT image for a frac-
tured tibia that was broken into three fragments using the PWT algorithm.
Figure (18) shows all fragments together while each fragment is viewed sepa-
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(a) (b) (c)

Figure 17: The segmentation results for a 3D CT image for unbroken tibia
using the PWT algorithm and its “ground truth” segmentation. The PWT
segmentation result is shown in red, while the “ground truth” segmentation
is shown in pink. They are shown together to allow for visual comparison
of the results and to better understand the strengths and weaknesses of the
PWT algorithm.

Fragment First Second Third
CC 0.09 0.22 0.38

Table 4: The cut discrepancy metric values measured for the segmentation
result for a 3D CT image for a broken tibia that was fractured into three
fragments. The first, second, and third fragments are shown in figures (19-
21), respectively.

rately in figures (19-21). The segmentation result is shown from three differ-
ent view perspective: axial, sagittal, and coronal. The segmentation result
and the human generated segmentation, i.e., “ground truth”, are shown to-
gether to allow for visual comparison of the results. Different segmented
regions are shown in different colors.

The segmentation result indicates that five regions were generated to
represent the three fracture tibia fragments. Each ground truth fragment is
compared with the segmented fragment that has the largest overlap with it.
The cut discrepancy metric for each fragment is shown in table (4). The
extra two segmented fragments are considered segmentation errors that are
explained next.

The proposed algorithm showed two weaknesses during the tests: 1) it
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(a) (b) (c)

(d) (e) (f)

Figure 18: The segmentation results for a 3D CT image for a broken tibia
using the PWT algorithm and its “ground truth” segmentation. Figures (a-
c) show the segmentation result for all fractured tibia fragments from three
different view perspective: axial, sagittal, and coronal, respectively. Figures
(d-f) show the human generated segmentation which is treated as “ground
truth” from three different view perspective: axial, sagittal, and coronal,
respectively. Different segmented regions are shown in different colors.
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(a) (b) (c)

Figure 19: The segmentation results for the first fragment of three within
a 3D CT image for a broken tibia using the PWT algorithm and its corre-
sponding “ground truth” segmentation. Figures (a-c) show the segmentation
result from three different view perspective: axial, sagittal, and coronal, re-
spectively. The PWT segmentation result is shown in dark blue, while the
“ground truth” segmentation is shown in red.

(a) (b) (c)

Figure 20: The segmentation results for the second fragment of three within
a 3D CT image for a broken tibia using the PWT algorithm and its corre-
sponding “ground truth” segmentation. Figures (a-c) show the segmentation
result from three different view perspective: axial, sagittal, and coronal, re-
spectively. The PWT segmentation result is shown in blue, while the “ground
truth” segmentation is shown in orange.
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Figure 21: The segmentation results for the third fragment of three within
a 3D CT image for a broken tibia using the PWT algorithm and its corre-
sponding “ground truth” segmentation. Figures (a-c) show the segmentation
result from three different view perspective: axial, sagittal, and coronal, re-
spectively. The PWT segmentation result is shown in blue, while the “ground
truth” segmentation is shown in salmon color.

may generates an incorrect number of bone fragments, and 2) it may not
perform well on segmenting small bone fragments.

For the first weakness, the proposed segmentation algorithm may generate
an incorrect number of segments due to an error in detecting the correct
number of markers for bone fragment segments in the classification process
stage, refer to section (3.1). This can be explained, in part, due to two
reasons: 1) the existence of low intensity cortex areas within the cortex
region and 2) the minimum intensity value considered a cortical tissue is too
low value. These reasons may divide a single cortex region into multiple ones
or may connect multiple disjoint regions together by assuming pixels that do
not belong to a cortical tissue as cortical pixels. So an incorrect number of
markers is generated, hence the incorrect number of segments..

For the second weakness, the proposed segmentation algorithm may not
perform well in segmenting small bone fragment for two main reasons: 1) the
ratio of the size of the cortex region with respect to the size of the segment
is relatively small for small fragments and 2) the width of a bone region
for a small fragment is relatively small. For the first reason, having a small
cortex region in a fragment segment generates a relatively small marker with
respect to the size of that intended segment. So the pixels that belong to
that intended segment may have large distances to the marker region causing
them to have low fragment likelihood values according to equation (1). Pixels
with low likelihood values for a marker are less likely labeled with the label
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of that marker especially when they are close to other markers. So, these
pixels are highly likely labeled with incorrect labels. For the second reason,
having a bone region with small width increases the number of pixels that
are likely to be inside ”isthmus” bone areas in that region. These pixels are
given low probability values according to equation (11). As a result, the
pixels that are assumed to be inside ”isthmus” bone areas are labeled last
in the PWT algorithm and they are divided evenly between the neighboring
segments causing some of these pixels to be incorrectly labeled.

Furthermore, the algorithm is not able to estimate bone fragments that
contains cancellous bone tissue only, and may be affected by the noise caused
beam hardening from a cast. For the first situation, the algorithm either
ignores the cancellous-only fragments if they are not attached to any marker
or merge their regions with other attaching neighboring fragment regions.
For the second situation, the algorithm may generate false markers due to
the existence of beam hardening noise. This noise is reduced by ignoring
markers located outside the limb or ignoring markers with too high intensity
values. Metal objects appear so bright in CT images.

5. Conclusions

A novel segmentation algorithm is presented to segment bone fragments
within CT images using the PWT. The new bone segmentation algorithm
presents a unique likelihood probability that is based on intensity and posi-
tion information of the image pixels to increase the algorithm robustness to
image inhomogeneities. The algorithm also introduces an original solution
to leak problem through ”isthmus” bone areas by detecting pixels in these
areas of the bone region in the image and processing them last in the al-
gorithm. The algorithm parameters are the values for minimum intensities
for cortical and cancellous regions in the CT image which are set during
the calibration process of the imaging device. These parameters are easy to
understand and control which make the algorithm intuitive for clinical ap-
plications. The conducted experiments to extract bone fragments from CT
images show the benefits of the presented algorithm to leading segmentation
algorithms. Also, the algorithm is applied in a medical application to ex-
tract tibia and fibula bone fragments from CT image stacks. The presented
algorithm showed a convincing accuracy which suggests that the algorithm
could be used in different medical image segmentation problems.
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